A group G is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a finitely generated soluble group is metahamiltonian if and only if all its finite homomorphic images are metahamiltonian; the behaviour of soluble minimax groups with metahamiltonian finite homomorphic images is also investigated. Moreover, groups satisfying the minimal condition on non-metahamiltonian subgroups are described.
Groups whose finite homomorphic images are metahamiltonian / DE FALCO, Maria; DE GIOVANNI, Francesco; Musella, Carmela. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - STAMPA. - (2009), pp. 2468-2476.
Groups whose finite homomorphic images are metahamiltonian
DE FALCO, MARIA;DE GIOVANNI, FRANCESCO;MUSELLA, CARMELA
2009
Abstract
A group G is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a finitely generated soluble group is metahamiltonian if and only if all its finite homomorphic images are metahamiltonian; the behaviour of soluble minimax groups with metahamiltonian finite homomorphic images is also investigated. Moreover, groups satisfying the minimal condition on non-metahamiltonian subgroups are described.File | Dimensione | Formato | |
---|---|---|---|
MetahamiltonianImages.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
113.87 kB
Formato
Adobe PDF
|
113.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.