Hydrogen sulphide (H2S) has been involved in cardiovascular homoeostasis but data about its role in animal models of diabetic pathology are still lacking. Here, we have analysed H2S signalling in a genetic model of diabetes, the non-obese diabetic (NOD) mice. NOD mice exhibit a progressive endothelial dysfunction characterized by a reduced reactivity of blood vessels as diabetes develops. NOD mice were divided into three groups according to different glycosuria values: NOD I, NOD II and NOD III. Age-matched non-obese resistant (NOR) mice were used as controls. H(2)S levels in plasma and aortic tissue were measured. Functional studies in aorta were carried out in isolated organ baths using both an exogenous source of H2S (NaHS) and the metabolic precursor (L-cysteine). Real time PCR and western blot analysis were also carried out on aortic tissues. NOD mice exhibited a progressive reduction of H2S plasma levels, which paralleled disease severity. L-cysteine-induced H2S production by aortic tissues was also progressively reduced. L-cysteine-induced vasorelaxation was significantly reduced in NOD mice while NaHS-induced relaxation was unaffected. ODQ (guanylate cyclase inhibitor), L-NAME (NO synthase inhibitor) or PAG, an inhibitor of cystathionine-gamma-lyase (CSE) inhibited H2S production induced by L-cysteine. In NOD mice, endogenous H2S production is significantly impaired. Also, the ability of isolated aorta to respond to exogenous H2S is enhanced and endothelium-derived NO appears to be involved in the enzymatic conversion of L-cysteine into H2S.

Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice / Brancaleone, V; Roviezzo, Fiorentina; Vellecco, Valentina; De Gruttola, L; Bucci, Mariarosaria; Cirino, Giuseppe. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - STAMPA. - 155:5(2008), pp. 673-680. [10.1038/bjp.2008.296]

Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice

ROVIEZZO FIORENTINA;Vellecco VALENTINA;BUCCI MARIAROSARIA;CIRINO GIUSEPPE
2008

Abstract

Hydrogen sulphide (H2S) has been involved in cardiovascular homoeostasis but data about its role in animal models of diabetic pathology are still lacking. Here, we have analysed H2S signalling in a genetic model of diabetes, the non-obese diabetic (NOD) mice. NOD mice exhibit a progressive endothelial dysfunction characterized by a reduced reactivity of blood vessels as diabetes develops. NOD mice were divided into three groups according to different glycosuria values: NOD I, NOD II and NOD III. Age-matched non-obese resistant (NOR) mice were used as controls. H(2)S levels in plasma and aortic tissue were measured. Functional studies in aorta were carried out in isolated organ baths using both an exogenous source of H2S (NaHS) and the metabolic precursor (L-cysteine). Real time PCR and western blot analysis were also carried out on aortic tissues. NOD mice exhibited a progressive reduction of H2S plasma levels, which paralleled disease severity. L-cysteine-induced H2S production by aortic tissues was also progressively reduced. L-cysteine-induced vasorelaxation was significantly reduced in NOD mice while NaHS-induced relaxation was unaffected. ODQ (guanylate cyclase inhibitor), L-NAME (NO synthase inhibitor) or PAG, an inhibitor of cystathionine-gamma-lyase (CSE) inhibited H2S production induced by L-cysteine. In NOD mice, endogenous H2S production is significantly impaired. Also, the ability of isolated aorta to respond to exogenous H2S is enhanced and endothelium-derived NO appears to be involved in the enzymatic conversion of L-cysteine into H2S.
2008
Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice / Brancaleone, V; Roviezzo, Fiorentina; Vellecco, Valentina; De Gruttola, L; Bucci, Mariarosaria; Cirino, Giuseppe. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - STAMPA. - 155:5(2008), pp. 673-680. [10.1038/bjp.2008.296]
File in questo prodotto:
File Dimensione Formato  
BJP 2008.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 204.21 kB
Formato Adobe PDF
204.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/333560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 159
  • ???jsp.display-item.citation.isi??? 148
social impact