Let p_C be the regularity of the Hilbert function of a projective curve C in the projective space Pn of dimension n over an algebraically closed field K and let a_1, . . . , a_(n−1) be degrees for which there exists a complete intersection of type (a_1, . . . ,a_( n−1)) containing properly C. Then the CastelnuovoMumford regularity of C is bounded above by max {p_C +1, a_1 +. . .+a_(n−1) −(n−1)} .We investigate the sharpness of the above bound, which is achieved by curves algebraically linked to ones having degenerate general hyperplane section.

Regularity bounds by minimal generators and Hilbert function / Cioffi, Francesca; M., Grazia Marinari; Luciana, Ramella. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - STAMPA. - 60:1(2009), pp. 89-100.

Regularity bounds by minimal generators and Hilbert function

CIOFFI, FRANCESCA;
2009

Abstract

Let p_C be the regularity of the Hilbert function of a projective curve C in the projective space Pn of dimension n over an algebraically closed field K and let a_1, . . . , a_(n−1) be degrees for which there exists a complete intersection of type (a_1, . . . ,a_( n−1)) containing properly C. Then the CastelnuovoMumford regularity of C is bounded above by max {p_C +1, a_1 +. . .+a_(n−1) −(n−1)} .We investigate the sharpness of the above bound, which is achieved by curves algebraically linked to ones having degenerate general hyperplane section.
2009
Regularity bounds by minimal generators and Hilbert function / Cioffi, Francesca; M., Grazia Marinari; Luciana, Ramella. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - STAMPA. - 60:1(2009), pp. 89-100.
File in questo prodotto:
File Dimensione Formato  
cioffi-marinari-ramella.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 229.23 kB
Formato Adobe PDF
229.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/337827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact