The molecular changes of organic matter in a cultivated soil after compost amendments was followed by off-line-pyrolysis-TMAH GC-MS. Thermochemolysis of soil and compost provided a detailed molecular characterization of soil organic matter (SOM) by releasing a large amount of different molecules mainly derived from plant biopolymers such as lignin, waxes and bio-polyesters. No significant differences were found before and after 1 year of cultivation in the pyrolytic products released by control soil, which were mainly fatty acids, oxidized forms of lignins, and minor amounts of microbial bio-products and biopolyesters derivatives. Conversely, significant qualitative and quantitative variations were found in the molecular characteristics of SOM between control and compost-amended soils after 1 year of cultivation. Increasing amounts and diversified components of fatty acids, n-alkanes and various biopolyesters derivatives such as hydroxy-alkanoic and alkandioic acids were found in the compost-amended soil. These results indicate that a significant amount of exogenous compost-derived organic molecules were incorporated into SOM after 1 year of cultivation. The organic structural indexes derived from these results indicated direct inputs of undecomposed lignin residues and hydrocarbon waxes from compost material. When compared with the control soil, small but significant amounts of plant biomarkers, such as cyclic di- and triterpenes derivatives, were found only in the compost-amended soil. These findings suggest that the molecular changes of SOM brought about by amendment with biomass residues can be followed by using thermochemolysis of bulk soil samples.
Molecular changes in organic matter of a compost-amended soil / Spaccini, Riccardo; Sannino, Donato; Piccolo, Alessandro; Fagnano, Massimo. - In: EUROPEAN JOURNAL OF SOIL SCIENCE. - ISSN 1351-0754. - STAMPA. - 60:(2009), pp. 287-296.
Molecular changes in organic matter of a compost-amended soil.
SPACCINI, RICCARDO;SANNINO, DONATO;PICCOLO, ALESSANDRO;FAGNANO, MASSIMO
2009
Abstract
The molecular changes of organic matter in a cultivated soil after compost amendments was followed by off-line-pyrolysis-TMAH GC-MS. Thermochemolysis of soil and compost provided a detailed molecular characterization of soil organic matter (SOM) by releasing a large amount of different molecules mainly derived from plant biopolymers such as lignin, waxes and bio-polyesters. No significant differences were found before and after 1 year of cultivation in the pyrolytic products released by control soil, which were mainly fatty acids, oxidized forms of lignins, and minor amounts of microbial bio-products and biopolyesters derivatives. Conversely, significant qualitative and quantitative variations were found in the molecular characteristics of SOM between control and compost-amended soils after 1 year of cultivation. Increasing amounts and diversified components of fatty acids, n-alkanes and various biopolyesters derivatives such as hydroxy-alkanoic and alkandioic acids were found in the compost-amended soil. These results indicate that a significant amount of exogenous compost-derived organic molecules were incorporated into SOM after 1 year of cultivation. The organic structural indexes derived from these results indicated direct inputs of undecomposed lignin residues and hydrocarbon waxes from compost material. When compared with the control soil, small but significant amounts of plant biomarkers, such as cyclic di- and triterpenes derivatives, were found only in the compost-amended soil. These findings suggest that the molecular changes of SOM brought about by amendment with biomass residues can be followed by using thermochemolysis of bulk soil samples.File | Dimensione | Formato | |
---|---|---|---|
EJSS Spaccini et al 2009c.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
617.75 kB
Formato
Adobe PDF
|
617.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.