Probiotic strains play an important role in modulating activities in the gut-associated lymphoid tissue. Elucidation of the mechanisms that mediate probiotic-driven immunomodulation may facilitate their therapeutic application for specific immune-mediated diseases or for prophylaxis. In this study, we explored the effect of different Lactobacillus spp. and Bifidobacterium lactis in transgenic mice expressing the human DQ8 heterodimer, a HLA molecule linked to Celiac Disease (CD). In vitro analysis on immature bone marrow-derived dendritic cells (iBMDCs) showed that all strains up-regulated surface B7-2 (CD86), indicative of DC maturation, however, with different intensity. No strain induced appreciable levels of 1110 or IL-12 in iBMDCs, whereas TNF-alpha expression was essentially elicited by Lactobacillus paracasei and Lactobacillus fermentum. Interestingly, these strains were found also to increase the antigen-specific TNF-alpha secretion in vivo, following co-administration of probiotic bacteria in mice mucosally immunized with the gluten component gliadin. Together these findings highlighted the ability of probiotics to exert strain-specific inductive rather than suppressive effects both on the innate and adaptive immunity in a mouse model of food antigen sensitivity. (C) 2009 Elsevier Ltd. All rights reserved.
Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity / D'Arienzo, Rossana; F., Maurano; P., Lavermicocca; Ricca, Ezio; M., Rossi. - In: CYTOKINE. - ISSN 1043-4666. - STAMPA. - 48:(2009), pp. 254-259.
Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity
D'ARIENZO, ROSSANA;RICCA, EZIO;
2009
Abstract
Probiotic strains play an important role in modulating activities in the gut-associated lymphoid tissue. Elucidation of the mechanisms that mediate probiotic-driven immunomodulation may facilitate their therapeutic application for specific immune-mediated diseases or for prophylaxis. In this study, we explored the effect of different Lactobacillus spp. and Bifidobacterium lactis in transgenic mice expressing the human DQ8 heterodimer, a HLA molecule linked to Celiac Disease (CD). In vitro analysis on immature bone marrow-derived dendritic cells (iBMDCs) showed that all strains up-regulated surface B7-2 (CD86), indicative of DC maturation, however, with different intensity. No strain induced appreciable levels of 1110 or IL-12 in iBMDCs, whereas TNF-alpha expression was essentially elicited by Lactobacillus paracasei and Lactobacillus fermentum. Interestingly, these strains were found also to increase the antigen-specific TNF-alpha secretion in vivo, following co-administration of probiotic bacteria in mice mucosally immunized with the gluten component gliadin. Together these findings highlighted the ability of probiotics to exert strain-specific inductive rather than suppressive effects both on the innate and adaptive immunity in a mouse model of food antigen sensitivity. (C) 2009 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
D'Arienzo et al.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
466.91 kB
Formato
Adobe PDF
|
466.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.