Climatic changes, together with an increase in the movement of cats and dogs across Europe, have caused an increase in the geographical range of several vector borne parasites like Dirofilaria, and in the risk of infection for animals and humans. The present paper reviews the effects of climate and other global drivers on Dirofilaria immitis and Dirofilaria repens infections in Europe and the possible implications on the transmission and control of these mosquito-borne nematodes. In the last several years, growing degree day (GDD)- based forecast models, which use wide or local scale temperature data, have been developed to predict the occurrence and seasonality of Dirofilaria in different parts of the world. All these models are based on the fact that: there is a threshold of 14 8C below which Dirofilaria development will not proceed; and there is a requirement of 130 GDD for larvae to reach infectivity and a maximumlife expectancy of 30 days for a vectormosquito. The output of these models predicts that the summer temperatures (with peaks in July) are sufficient to facilitate extrinsic incubation of Dirofilaria even at high latitudes. The global warming projected by the Intergovernmental Panel on Climate Change suggests that warm summers suitable for Dirofilaria transmission in Europe will be the rule in the future decades and if the actual trend of temperature increase continues, filarial infection should spread into previously infection-free areas. These factors not only favour incubation of Dirofilaria, but also impact on mosquito species. Recent findings have also demonstrated that Aedes albopictus is now considered to be an important, competent vector of Dirofilaria infections. This mosquito species could spread from southern to northern European countries in the near future, changing the epidemiological patterns of dirofilariosis both in humans and animals.
Climate and Dirofilaria infection in Europe / Genchi, C.; Rinaldi, Laura; Mortarino, M.; Genchi, M.; Cringoli, Giuseppe. - In: VETERINARY PARASITOLOGY. - ISSN 0304-4017. - ELETTRONICO. - 163:4(2009), pp. 286-292.
Climate and Dirofilaria infection in Europe
RINALDI, LAURA;CRINGOLI, GIUSEPPE
2009
Abstract
Climatic changes, together with an increase in the movement of cats and dogs across Europe, have caused an increase in the geographical range of several vector borne parasites like Dirofilaria, and in the risk of infection for animals and humans. The present paper reviews the effects of climate and other global drivers on Dirofilaria immitis and Dirofilaria repens infections in Europe and the possible implications on the transmission and control of these mosquito-borne nematodes. In the last several years, growing degree day (GDD)- based forecast models, which use wide or local scale temperature data, have been developed to predict the occurrence and seasonality of Dirofilaria in different parts of the world. All these models are based on the fact that: there is a threshold of 14 8C below which Dirofilaria development will not proceed; and there is a requirement of 130 GDD for larvae to reach infectivity and a maximumlife expectancy of 30 days for a vectormosquito. The output of these models predicts that the summer temperatures (with peaks in July) are sufficient to facilitate extrinsic incubation of Dirofilaria even at high latitudes. The global warming projected by the Intergovernmental Panel on Climate Change suggests that warm summers suitable for Dirofilaria transmission in Europe will be the rule in the future decades and if the actual trend of temperature increase continues, filarial infection should spread into previously infection-free areas. These factors not only favour incubation of Dirofilaria, but also impact on mosquito species. Recent findings have also demonstrated that Aedes albopictus is now considered to be an important, competent vector of Dirofilaria infections. This mosquito species could spread from southern to northern European countries in the near future, changing the epidemiological patterns of dirofilariosis both in humans and animals.File | Dimensione | Formato | |
---|---|---|---|
388.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
238.17 kB
Formato
Adobe PDF
|
238.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.