Abstract: As fragments of first-order logic, Description logics (DLs) do not provide nonmonotonic features such as defeasible inheritance and default rules. Since many applications would benefit from the availability of such features, several families of nonmonotonic DLs have been developed that are mostly based on default logic and autoepistemic logic. In this paper, we consider circumscription as an interesting alternative approach to nonmonotonic DLs that, in particular, supports defeasible inheritance in a natural way. We study DLs extended with circumscription under different language restrictions and under different constraints on the sets of minimized, fixed, and varying predicates, and pinpoint the exact computational complexity of reasoning for DLs ranging from ALC to ALCIO and ALCQO. When the minimized and fixed predicates include only concept names but no role names, then reasoning is complete for NExpTime^NP. It becomes complete for NP^NExpTime when the number of minimized and fixed predicates is bounded by a constant. If roles can be minimized or fixed, then complexity ranges from NExpTime^NP to undecidability.
The complexity of circumscription in DLs / Bonatti, PIERO ANDREA; C., Lutz; F., Wolter. - In: THE JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH. - ISSN 1076-9757. - STAMPA. - 35:(2009), pp. 717-773. [10.1613/jair.2763]
The complexity of circumscription in DLs
BONATTI, PIERO ANDREA;
2009
Abstract
Abstract: As fragments of first-order logic, Description logics (DLs) do not provide nonmonotonic features such as defeasible inheritance and default rules. Since many applications would benefit from the availability of such features, several families of nonmonotonic DLs have been developed that are mostly based on default logic and autoepistemic logic. In this paper, we consider circumscription as an interesting alternative approach to nonmonotonic DLs that, in particular, supports defeasible inheritance in a natural way. We study DLs extended with circumscription under different language restrictions and under different constraints on the sets of minimized, fixed, and varying predicates, and pinpoint the exact computational complexity of reasoning for DLs ranging from ALC to ALCIO and ALCQO. When the minimized and fixed predicates include only concept names but no role names, then reasoning is complete for NExpTime^NP. It becomes complete for NP^NExpTime when the number of minimized and fixed predicates is bounded by a constant. If roles can be minimized or fixed, then complexity ranges from NExpTime^NP to undecidability.File | Dimensione | Formato | |
---|---|---|---|
jair09-2763-4607.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
446.55 kB
Formato
Adobe PDF
|
446.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.