Let $mathbb S^1$ and $mathbb D$ be the unit circle and the unit disc in the plane and let us denote by $mathcal A(mathbb S^1)$ the algebra of the complex valued continuous functions on $mathbb S^1$ which are traces of functions in the Sobolev class $mathscr W^{1,2}(mathbb D)$. On $mathcal A(mathbb S^1)$ we define the following norm $|u|= |u|_{L^{infty}(mathbb S^1)}+ left(int int_{mathbb D}| abla ilde{u}|^2 ight)^{1/2}$ where $ ilde{u}$ is the harmonic extension of $u$ to $mathbb D$. We prove that every isomorphism of the functional algebra $mathcal A(mathbb S^1)$ is a quasisymmetric change of variables on $mathbb S^1$.
Isomorphisms of Royden Type Algebras over $mathbb S^1$ / Radice, Teresa; Saksman, E.; Zecca, Gabriella. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - II:9(2009), pp. 719-729.
Isomorphisms of Royden Type Algebras over $mathbb S^1$
RADICE, TERESA;ZECCA, GABRIELLA
2009
Abstract
Let $mathbb S^1$ and $mathbb D$ be the unit circle and the unit disc in the plane and let us denote by $mathcal A(mathbb S^1)$ the algebra of the complex valued continuous functions on $mathbb S^1$ which are traces of functions in the Sobolev class $mathscr W^{1,2}(mathbb D)$. On $mathcal A(mathbb S^1)$ we define the following norm $|u|= |u|_{L^{infty}(mathbb S^1)}+ left(int int_{mathbb D}| abla ilde{u}|^2 ight)^{1/2}$ where $ ilde{u}$ is the harmonic extension of $u$ to $mathbb D$. We prove that every isomorphism of the functional algebra $mathcal A(mathbb S^1)$ is a quasisymmetric change of variables on $mathbb S^1$.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


