Pressure overload has been shown to induce mitogen activated protein kinases (MAPKs) and reactivate the atrial natriuretic factor in the heart. To test the sensitivity of these signals to pressure overload, we assayed the activity of MAPKs extracellular signal-regulated kinase, c-Jun N-terminal kinase 1, and p38 in protein lysates from the left ventricle (LV) or white blood cells (WBC) isolated from aortic banded mice with varying levels of pressure overload. In separated mice we measured atrial natriuretic factor mRNA levels by Northern blotting. As expected, a significant induction of atrial natriuretic factor mRNA levels was observed after aortic banding, and it significantly correlated with the trans-stenotic systolic pressure gradient but not with the LV weight:body weight ratio. In contrast, a significant correlation with systolic pressure gradient or LV weight:body weight ratio was observed for all of the MAPK activity detected in LV samples or WBCs. Importantly, LV activation of MAPKs significantly correlated with their activation in WBCs from the same animal. To test whether MAPK activation in WBCs might reflect uncontrolled blood pressure levels in humans, we assayed extracellular signal-regulated kinase, c-Jun N-terminal kinase 1, and p38 activation in WBCs isolated from normotensive volunteers, hypertensive patients with controlled blood pressure values, or hypertensive patients with uncontrolled blood pressure values. Interestingly, in hypertensive patients with controlled blood pressure values, LV mass and extracellular signal-regulated kinase phosphorylation were significantly reduced compared with those in hypertensive
Induction of mitogen-activated protein kinases is proportional to the amount of pressure overload / Esposito, Giovanni; Perrino, Cinzia; Schiattarella, Gg; Belardo, L; di Pietro, E; Franzone, A; Capretti, G; Gargiulo, G; Pironti, G; Cannavo, A; Sannino, A; Izzo, Raffaele; Chiariello, Massimo. - In: HYPERTENSION. - ISSN 0194-911X. - STAMPA. - 55:1(2010), pp. 137-143. [10.1161/HYPERTENSIONAHA.109.135467]
Induction of mitogen-activated protein kinases is proportional to the amount of pressure overload.
ESPOSITO, GIOVANNI
;PERRINO, CINZIA;Schiattarella GG;Franzone A;Gargiulo G;Cannavo A;Sannino A;IZZO, RAFFAELE;CHIARIELLO, MASSIMO
2010
Abstract
Pressure overload has been shown to induce mitogen activated protein kinases (MAPKs) and reactivate the atrial natriuretic factor in the heart. To test the sensitivity of these signals to pressure overload, we assayed the activity of MAPKs extracellular signal-regulated kinase, c-Jun N-terminal kinase 1, and p38 in protein lysates from the left ventricle (LV) or white blood cells (WBC) isolated from aortic banded mice with varying levels of pressure overload. In separated mice we measured atrial natriuretic factor mRNA levels by Northern blotting. As expected, a significant induction of atrial natriuretic factor mRNA levels was observed after aortic banding, and it significantly correlated with the trans-stenotic systolic pressure gradient but not with the LV weight:body weight ratio. In contrast, a significant correlation with systolic pressure gradient or LV weight:body weight ratio was observed for all of the MAPK activity detected in LV samples or WBCs. Importantly, LV activation of MAPKs significantly correlated with their activation in WBCs from the same animal. To test whether MAPK activation in WBCs might reflect uncontrolled blood pressure levels in humans, we assayed extracellular signal-regulated kinase, c-Jun N-terminal kinase 1, and p38 activation in WBCs isolated from normotensive volunteers, hypertensive patients with controlled blood pressure values, or hypertensive patients with uncontrolled blood pressure values. Interestingly, in hypertensive patients with controlled blood pressure values, LV mass and extracellular signal-regulated kinase phosphorylation were significantly reduced compared with those in hypertensiveFile | Dimensione | Formato | |
---|---|---|---|
Esposito Hypertension 2010.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
663.72 kB
Formato
Adobe PDF
|
663.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.