Monitoring of structural integrity is an essential issue in enhancing the affordability as well the safety of modern aircraft and spacecraft structures. Increasingly, metallic parts of aircrafts are being replaced by carbon fibre composite components due to their high strength and stiffness combined with low density. This paper reviews of the use of superconducting quantum interference devices (SQUIDs) in the detection of different types of damage in carbon fibre panels. The results presented here on impact damage on carbon fibre reinforced polymer and cracks induced by tensile loads on carbon fibre reinforced carbon matrix show that this method is sensitive not only to the presence but also the severity of damage. Indeed, it enables one to distinguish between the different failure mechanisms as the damage process evolves. SQUIDs response to artificial delaminations, flaws and deep-lying defects are also presented. The application of a neural network system for the detection of impact damage in a noisy environment is discussed. Experimental results demonstrate that nondestructive evaluation using SQUID magnetometers is a suitable technique to investigate composites to improve their mechanical properties.
Nondestructive detection of damage in carbon fibre composites by SQUID magnetometry / Ruosi, Adele. - In: PHYSICA STATUS SOLIDI. C. - ISSN 1610-1642. - STAMPA. - 2:5(2005), pp. 1533-1555. [10.1002/pssc.200460835]
Nondestructive detection of damage in carbon fibre composites by SQUID magnetometry
RUOSI, ADELE
2005
Abstract
Monitoring of structural integrity is an essential issue in enhancing the affordability as well the safety of modern aircraft and spacecraft structures. Increasingly, metallic parts of aircrafts are being replaced by carbon fibre composite components due to their high strength and stiffness combined with low density. This paper reviews of the use of superconducting quantum interference devices (SQUIDs) in the detection of different types of damage in carbon fibre panels. The results presented here on impact damage on carbon fibre reinforced polymer and cracks induced by tensile loads on carbon fibre reinforced carbon matrix show that this method is sensitive not only to the presence but also the severity of damage. Indeed, it enables one to distinguish between the different failure mechanisms as the damage process evolves. SQUIDs response to artificial delaminations, flaws and deep-lying defects are also presented. The application of a neural network system for the detection of impact damage in a noisy environment is discussed. Experimental results demonstrate that nondestructive evaluation using SQUID magnetometers is a suitable technique to investigate composites to improve their mechanical properties.File | Dimensione | Formato | |
---|---|---|---|
PhysStatSol 2005 Ruosi.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.