The RET tyrosine kinase is a functional receptor for neurotrophic ligands of the glial cell line-derived neurotrophic factor (GDNF) family. Loss of function of RET is associated with congenital megacolon or Hirschsprung’s disease, whereas germ-line point mutations causing RET activation are responsible for multiple endocrine neoplasia type 2 (MEN2A, MEN2B, and familial medullary thyroid carcinoma) syndromes. Here we show that the expression of a constitutively active RET-MEN2A oncogene promotes survival of rat pheochromocytoma PC12 cells upon growth factor withdrawal. Moreover, we show that the RET-MEN2A-mediated survival depends on signals transduced by the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) cascades. Thus, in PC12 cells, RET-MEN2A associates with the PI3K regulatory subunit p85 and promotes activation of Akt (also referred to as protein kinase B) in a PI3K-dependent fashion; in addition, RET-MEN2A promotes MAPK activation. PI3K recruitment and Akt activation as well as MAPK activation depend on RET-MEN2A tyrosine residue 1062. As a result, tyrosine 1062 of RET-MEN2A is essential for RET-MEN2A-mediated survival of PC12 cells cultured in growth factor-depleted media.
Tyrosine 1062 of RET-MEN2A mediates activation of Akt (protein kinase B) and mitogen-activated protein kinase pathways leading to PC12 cell survival / DE VITA, Gabriella; Melillo, ROSA MARINA; Carlomagno, Francesca; Visconti, R; Castellone, Md; Bellacosa, A; Billaud, M; Fusco, Alfredo; Tsichlis, Pn; Santoro, M.. - In: CANCER RESEARCH. - ISSN 0008-5472. - STAMPA. - 60:(2000), pp. 3727-3731.
Tyrosine 1062 of RET-MEN2A mediates activation of Akt (protein kinase B) and mitogen-activated protein kinase pathways leading to PC12 cell survival
DE VITA, GABRIELLA;MELILLO, ROSA MARINA;CARLOMAGNO, Francesca;FUSCO, ALFREDO;
2000
Abstract
The RET tyrosine kinase is a functional receptor for neurotrophic ligands of the glial cell line-derived neurotrophic factor (GDNF) family. Loss of function of RET is associated with congenital megacolon or Hirschsprung’s disease, whereas germ-line point mutations causing RET activation are responsible for multiple endocrine neoplasia type 2 (MEN2A, MEN2B, and familial medullary thyroid carcinoma) syndromes. Here we show that the expression of a constitutively active RET-MEN2A oncogene promotes survival of rat pheochromocytoma PC12 cells upon growth factor withdrawal. Moreover, we show that the RET-MEN2A-mediated survival depends on signals transduced by the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) cascades. Thus, in PC12 cells, RET-MEN2A associates with the PI3K regulatory subunit p85 and promotes activation of Akt (also referred to as protein kinase B) in a PI3K-dependent fashion; in addition, RET-MEN2A promotes MAPK activation. PI3K recruitment and Akt activation as well as MAPK activation depend on RET-MEN2A tyrosine residue 1062. As a result, tyrosine 1062 of RET-MEN2A is essential for RET-MEN2A-mediated survival of PC12 cells cultured in growth factor-depleted media.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.