We show that any Fermat hypersurface of degree s + 2 is apolar to a s-subcanonical (s + 2)-gonal projectively normal curve, and vice versa. Moreover, we extend the classical Enriques-Petri Theorem to s-subcanonical projectively normal curves, proving that such a curve is (s + 2)-gonal if and only if it is contained in a rational normal surface.

"Apolarita' per curve sottocanoniche" / Ilardi, Giovanna. - (2011).

"Apolarita' per curve sottocanoniche".

ILARDI, GIOVANNA
2011

Abstract

We show that any Fermat hypersurface of degree s + 2 is apolar to a s-subcanonical (s + 2)-gonal projectively normal curve, and vice versa. Moreover, we extend the classical Enriques-Petri Theorem to s-subcanonical projectively normal curves, proving that such a curve is (s + 2)-gonal if and only if it is contained in a rational normal surface.
2011
"Apolarita' per curve sottocanoniche" / Ilardi, Giovanna. - (2011).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/425805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact