We show that any Fermat hypersurface of degree s + 2 is apolar to a s-subcanonical (s + 2)-gonal projectively normal curve, and vice versa. Moreover, we extend the classical Enriques-Petri Theorem to s-subcanonical projectively normal curves, proving that such a curve is (s + 2)-gonal if and only if it is contained in a rational normal surface.
"Apolarita' per curve sottocanoniche" / Ilardi, Giovanna. - (2011).
"Apolarita' per curve sottocanoniche".
ILARDI, GIOVANNA
2011
Abstract
We show that any Fermat hypersurface of degree s + 2 is apolar to a s-subcanonical (s + 2)-gonal projectively normal curve, and vice versa. Moreover, we extend the classical Enriques-Petri Theorem to s-subcanonical projectively normal curves, proving that such a curve is (s + 2)-gonal if and only if it is contained in a rational normal surface.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.