Binary data represent a very special condition where both measures of distance and co-occurrence can be adopted. Euclidean distance-based non-hierarchical methods, like the k-means algorithm, or one of its versions, can be profitably used. When the number of available attributes increases the global clustering performance usually worsens. In such cases, to enhance group separability it is necessary to remove the irrelevant and redundant noisy information from the data. The present approach belongs to the category of attribute transformation strategy, and combines clustering and factorial techniques to identify attribute associations that characterize one or more homogeneous groups of statistical units. Furthermore, it provides graphical representations that facilitate the interpretation of the results. © 2012 Springer-Verlag.

Iterative factor clustering of binary data / Iodice D'Enza, A.; Palumbo, Francesco. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - 28:2(2013), pp. 789-807. [10.1007/s00180-012-0329-x]

Iterative factor clustering of binary data

A. Iodice D'Enza;PALUMBO, FRANCESCO
2013

Abstract

Binary data represent a very special condition where both measures of distance and co-occurrence can be adopted. Euclidean distance-based non-hierarchical methods, like the k-means algorithm, or one of its versions, can be profitably used. When the number of available attributes increases the global clustering performance usually worsens. In such cases, to enhance group separability it is necessary to remove the irrelevant and redundant noisy information from the data. The present approach belongs to the category of attribute transformation strategy, and combines clustering and factorial techniques to identify attribute associations that characterize one or more homogeneous groups of statistical units. Furthermore, it provides graphical representations that facilitate the interpretation of the results. © 2012 Springer-Verlag.
2013
Iterative factor clustering of binary data / Iodice D'Enza, A.; Palumbo, Francesco. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - 28:2(2013), pp. 789-807. [10.1007/s00180-012-0329-x]
File in questo prodotto:
File Dimensione Formato  
09_CS_iFCB.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/426297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 9
social impact