Hepatitis C virus glycoproteins E1 and E2 do not reach the plasma membrane of the cell but accumulate intracellularly, mostly in the endoplasmic reticulum. Previous studies based on transient expression assays have shown that the transmembrane domains of both glycoproteins are sufficient to localize reporter proteins in the endoplasmic reticulum and that other localization signals may be contained in the ectodomain of E1 protein. To identify such signals we generated chimeric proteins between E1 and two reporter proteins, the human CD8 glycoprotein and the human alkaline phosphatase, and analyzed their subcellular localization in stable as well as transient transfectants. Our results showed that (i) an independent localization determinant for the endoplasmic reticulum is present in the juxtamembrane region of the ectodomain of E1 protein and (ii) the localization dictated by this determinant is either due to direct retention or to a recycling mechanism from the intermediate compartment/cis-Golgi complex region, which is clearly different from those previously described for other retrieval signals. These results show for the first time in mammalian cells that the localization in the endoplasmic reticulum of transmembrane protein can be determined by specific targeting signals acting in the lumen of the compartment.
A new determinant of endoplasmic reticulum localization is contained in the juxtamembrane region of the ectodomain of hepatitis C virus glycoprotein E1 / Mottola, Giovanna; N., Jourdan; G., Castaldo; N., Malagolini; A., Lahm; F., Serafini Cessi; G., Migliaccio; Bonatti, Stefano. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - ELETTRONICO. - 275:31(2000), pp. 24070-24079.
A new determinant of endoplasmic reticulum localization is contained in the juxtamembrane region of the ectodomain of hepatitis C virus glycoprotein E1
MOTTOLA, GIOVANNA;BONATTI, STEFANO
2000
Abstract
Hepatitis C virus glycoproteins E1 and E2 do not reach the plasma membrane of the cell but accumulate intracellularly, mostly in the endoplasmic reticulum. Previous studies based on transient expression assays have shown that the transmembrane domains of both glycoproteins are sufficient to localize reporter proteins in the endoplasmic reticulum and that other localization signals may be contained in the ectodomain of E1 protein. To identify such signals we generated chimeric proteins between E1 and two reporter proteins, the human CD8 glycoprotein and the human alkaline phosphatase, and analyzed their subcellular localization in stable as well as transient transfectants. Our results showed that (i) an independent localization determinant for the endoplasmic reticulum is present in the juxtamembrane region of the ectodomain of E1 protein and (ii) the localization dictated by this determinant is either due to direct retention or to a recycling mechanism from the intermediate compartment/cis-Golgi complex region, which is clearly different from those previously described for other retrieval signals. These results show for the first time in mammalian cells that the localization in the endoplasmic reticulum of transmembrane protein can be determined by specific targeting signals acting in the lumen of the compartment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.