The RET proto-oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non-neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non-neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild-type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972-->Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32-->Leu) and HSCR393 (Phe393-->Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.
Molecular heterogeneity of RET loss of function in Hirschsprung's disease / Carlomagno, F.; DE VITA, Gabriella; Berlingieri, M. T.; Defranciscis, V.; Melillo, ROSA MARINA; Colantuoni, V.; Kraus, M. H.; Difiore, P. P.; Fusco, Alfredo; Santoro, M.. - In: EMBO JOURNAL. - ISSN 0261-4189. - STAMPA. - 15:(1996), pp. 2717-2725.
Molecular heterogeneity of RET loss of function in Hirschsprung's disease
F. Carlomagno;DE VITA, GABRIELLA;MELILLO, ROSA MARINA;FUSCO, ALFREDO;
1996
Abstract
The RET proto-oncogene encodes a receptor with tyrosine kinase activity (RET) that is involved in several neoplastic and non-neoplastic diseases. Oncogenic activation of RET, achieved by different mechanisms, is detected in a sizeable fraction of human thyroid tumors, as well as in multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinoma tumoral syndromes. Germline mutations of RET have also been associated with a non-neoplastic disease, the congenital colonic aganglionosis, i.e. Hirschsprung's disease (HSCR). To analyse the impact of HSCR mutations on RET function, we have introduced into wild-type RET and activated RET(MEN2A) and RET(MEN2B) alleles three missense mutations associated with HSCR. Here we show that the three mutations caused a loss of function of RET when assayed in two model cell systems, NIH 3T3 and PC12 cells. The effect of different HSCR mutations was due to different molecular mechanisms. The HSCR972 (Arg972-->Gly) mutation, mapping in the intracytoplasmic region of RET, impaired its tyrosine kinase activity, while two extracellular mutations, HSCR32 (Ser32-->Leu) and HSCR393 (Phe393-->Leu), inhibited the biological activity of RET by impairing the correct maturation of the RET protein and its transport to the cell surface.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.