In gas explosions, the unsteady coupling of the propagating flame and the flow field induced by the presence of blockages along the flame path produces vortices of different scales ahead of the flame front. The resulting flame-vortex interaction intensifies the rate of flame propagation and the pressure rise. In this paper, a joint numerical and experimental study of unsteady premixed flame propagation around three sequential obstacles in a small-scale vented explosion chamber is presented. The modeling work is carried out utilizing large eddy simulation (LES). In the experimental work, previous results (Patel et al., Proc Combust Inst 29:1849-1854, 2002) are extended to include simultaneous flame and particle image velocimetry (PIV) measurements of the flow field within the wake of each obstacle. Comparisons between LES predictions and experimental data show a satisfactory agreement in terms of shape of the propagating flame, flame arrival times, spatial profile of the flame speed, pressure time history, and velocity vector fields. Computations through the validated model are also performed to evaluate the effects of both large-scale and sub-grid scale (SGS) vortices on the flame propagation. The results obtained demonstrate that the large vortical structures dictate the evolution of the flame in qualitative terms (shape and structure of the flame, succession of the combustion regimes along the path, acceleration-deceleration step around each obstacle, and pressure time trend). Conversely, the SGS vortices do not affect the qualitative trends. However, it is essential to model their effects on the combustion rate to achieve quantitative predictions for the flame speed and the pressure peak. © 2009 Springer Science+Business Media B.V.

Large eddy simulation and piv measurements of unsteady premixed flames accelerated by obstacles / Di Sarli, V.; DI BENEDETTO, Almerinda; Russo, G.; Jarvis, S.; Long, E. J.; Hargrave, G. K.. - In: FLOW TURBULENCE AND COMBUSTION. - ISSN 1386-6184. - STAMPA. - 83:(2009), pp. 227-250. [10.1007/s10494-008-9198-3]

Large eddy simulation and piv measurements of unsteady premixed flames accelerated by obstacles

DI BENEDETTO, ALMERINDA;
2009

Abstract

In gas explosions, the unsteady coupling of the propagating flame and the flow field induced by the presence of blockages along the flame path produces vortices of different scales ahead of the flame front. The resulting flame-vortex interaction intensifies the rate of flame propagation and the pressure rise. In this paper, a joint numerical and experimental study of unsteady premixed flame propagation around three sequential obstacles in a small-scale vented explosion chamber is presented. The modeling work is carried out utilizing large eddy simulation (LES). In the experimental work, previous results (Patel et al., Proc Combust Inst 29:1849-1854, 2002) are extended to include simultaneous flame and particle image velocimetry (PIV) measurements of the flow field within the wake of each obstacle. Comparisons between LES predictions and experimental data show a satisfactory agreement in terms of shape of the propagating flame, flame arrival times, spatial profile of the flame speed, pressure time history, and velocity vector fields. Computations through the validated model are also performed to evaluate the effects of both large-scale and sub-grid scale (SGS) vortices on the flame propagation. The results obtained demonstrate that the large vortical structures dictate the evolution of the flame in qualitative terms (shape and structure of the flame, succession of the combustion regimes along the path, acceleration-deceleration step around each obstacle, and pressure time trend). Conversely, the SGS vortices do not affect the qualitative trends. However, it is essential to model their effects on the combustion rate to achieve quantitative predictions for the flame speed and the pressure peak. © 2009 Springer Science+Business Media B.V.
2009
Large eddy simulation and piv measurements of unsteady premixed flames accelerated by obstacles / Di Sarli, V.; DI BENEDETTO, Almerinda; Russo, G.; Jarvis, S.; Long, E. J.; Hargrave, G. K.. - In: FLOW TURBULENCE AND COMBUSTION. - ISSN 1386-6184. - STAMPA. - 83:(2009), pp. 227-250. [10.1007/s10494-008-9198-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/470342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 111
  • ???jsp.display-item.citation.isi??? ND
social impact