We provide isoperimetric Szego-Weinberger type inequalities for the first nontrivial Neumann eigenvaltie mu(1) (Omega) in Gauss space. where Omega is a possibly unbounded domain of R-N. Our main result consists in showing that among all sets Omega of R-N symmetric about the origin, having prescribed Gaussian measure, mu(1) (Omega) is maximum if and only if Omega is the Euclidean ball centered at the origin. (C) 2011 Elsevier Masson SAS. All rights reserved.
Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space / Chiacchio, Francesco; G., di Blasio. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 29:(2012), pp. 199-216. [10.1016/j.anihpc.2011.10.002]
Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space
CHIACCHIO, FRANCESCO;
2012
Abstract
We provide isoperimetric Szego-Weinberger type inequalities for the first nontrivial Neumann eigenvaltie mu(1) (Omega) in Gauss space. where Omega is a possibly unbounded domain of R-N. Our main result consists in showing that among all sets Omega of R-N symmetric about the origin, having prescribed Gaussian measure, mu(1) (Omega) is maximum if and only if Omega is the Euclidean ball centered at the origin. (C) 2011 Elsevier Masson SAS. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.