Several experimental studies on hepatitis C virus (HCV) have suggested the envelope glycoprotein E2 as a key antigen for an effective vaccine against the virus. Knowledge of its structure, therefore, would present a significant step forward in the fight against this disease. This paper reports the application of fold recognition methods in order to produce a model of the HCV E2 protein. Such investigation highlighted the envelope protein E of Tick. Borne Encephalitis virus as a possible template for building a model of HCV E2, Mapping of experimental data onto the model allowed the prediction of a composite interaction site between E2 and its proposed cellular receptor CD81, as well as a heparin binding domain. In addition, experimental evidence is provided to show that CD81 recognition by E2 is isolate or strain specific and possibly mediated by the second hypervariable region (HVR2) of E2, Finally, the studies have also allowed a rough model for the quaternary structure of the envelope glycoproteins E1 and E2 complex to be proposed. Proteins 2000;40:355-366. (C) 2000 Wiley-Liss, Inc.
A model for the hepatitis C virus envelope glycoprotein E2 / A. T., Yagnik; A., Lahm; A., Meola; R. M., Roccasecca; B. B., Ercole; Nicosia, Alfredo; A., Tramontano. - In: PROTEINS. - ISSN 0887-3585. - STAMPA. - 40:(2000), pp. 355-366. [10.1002/1097-0134(20000815)40:3<355]
A model for the hepatitis C virus envelope glycoprotein E2
NICOSIA, Alfredo;
2000
Abstract
Several experimental studies on hepatitis C virus (HCV) have suggested the envelope glycoprotein E2 as a key antigen for an effective vaccine against the virus. Knowledge of its structure, therefore, would present a significant step forward in the fight against this disease. This paper reports the application of fold recognition methods in order to produce a model of the HCV E2 protein. Such investigation highlighted the envelope protein E of Tick. Borne Encephalitis virus as a possible template for building a model of HCV E2, Mapping of experimental data onto the model allowed the prediction of a composite interaction site between E2 and its proposed cellular receptor CD81, as well as a heparin binding domain. In addition, experimental evidence is provided to show that CD81 recognition by E2 is isolate or strain specific and possibly mediated by the second hypervariable region (HVR2) of E2, Finally, the studies have also allowed a rough model for the quaternary structure of the envelope glycoproteins E1 and E2 complex to be proposed. Proteins 2000;40:355-366. (C) 2000 Wiley-Liss, Inc.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.