Two new perylene diimide derivatives N,N'-bis(5-tridecyl-1,3,4-thiadiazol-2-yl)perylene-3,4,9,10-tetracarboxylic 3,4:9,10-diimide (PDI-T1) and N,N'-bis[5-(1-hexyl)nonyl-1,3,4-thiadiazol-2-yl]perylene-3,4,9,10-tetracarboxylic 3,4:9,10-diimide (PDI-T2), achieved by functionalizing the basic perylene molecular core at imide nitrogen with 1,3,4-thiadiazole rings, have been synthesized. Both these compounds make possible the fabrication of n-type organic thin-film transistors able to work in air, even when bare SiO2 surfaces are utilized as gate dielectric. As active channels of transistors in the bottom-contact bottom-gate configuration, PDI-T1 evaporated films exhibited a maximum mobility of 0.016 cm2/V s in vacuum. For evaporated PDI-T2 films, instead, mobility values were found to be more than one order of magnitude lower, because of their reduced degree of crystalline order. However, PDI-T2 films can be also deposited by solution techniques and field-effect transistors were fabricated by spin-coating, displaying mobility values ranging between 10-6 and 10-5 cm2/V s. Similar to what previously found for other perylene diimide derivatives, our experimental work also demonstrates that the electrical response of both PDI-T1 and PDI-T2 transistors under ambient conditions can be improved by increasing the level of hydrophobicity of the dielectric surface.
Perylene diimides functionalized with N-thiadiazole substituents: Synthesis and electronic properties in OFET devices / Centore, Roberto; Ricciotti, Laura; Carella, Antonio; Roviello, Antonio; Causa', Mauro; Mario, Barra; Ciccullo, Francesca; Cassinese, Antonio. - In: ORGANIC ELECTRONICS. - ISSN 1566-1199. - 13:(2012), pp. 2083-2093. [10.1016/j.orgel.2012.06.002]
Perylene diimides functionalized with N-thiadiazole substituents: Synthesis and electronic properties in OFET devices
CENTORE, ROBERTO;RICCIOTTI, LAURA;CARELLA, ANTONIO;ROVIELLO, ANTONIO;CAUSA', Mauro;CICCULLO, FRANCESCA;CASSINESE, ANTONIO
2012
Abstract
Two new perylene diimide derivatives N,N'-bis(5-tridecyl-1,3,4-thiadiazol-2-yl)perylene-3,4,9,10-tetracarboxylic 3,4:9,10-diimide (PDI-T1) and N,N'-bis[5-(1-hexyl)nonyl-1,3,4-thiadiazol-2-yl]perylene-3,4,9,10-tetracarboxylic 3,4:9,10-diimide (PDI-T2), achieved by functionalizing the basic perylene molecular core at imide nitrogen with 1,3,4-thiadiazole rings, have been synthesized. Both these compounds make possible the fabrication of n-type organic thin-film transistors able to work in air, even when bare SiO2 surfaces are utilized as gate dielectric. As active channels of transistors in the bottom-contact bottom-gate configuration, PDI-T1 evaporated films exhibited a maximum mobility of 0.016 cm2/V s in vacuum. For evaporated PDI-T2 films, instead, mobility values were found to be more than one order of magnitude lower, because of their reduced degree of crystalline order. However, PDI-T2 films can be also deposited by solution techniques and field-effect transistors were fabricated by spin-coating, displaying mobility values ranging between 10-6 and 10-5 cm2/V s. Similar to what previously found for other perylene diimide derivatives, our experimental work also demonstrates that the electrical response of both PDI-T1 and PDI-T2 transistors under ambient conditions can be improved by increasing the level of hydrophobicity of the dielectric surface.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.