The European Energy Efficiency Building Directive 2002/91/CE, as well as other acts and funding programs, strongly promotes the adoption of passive strategies for buildings, in order to achieve indoor thermal comfort conditions above all in summer, so reducing or avoiding the use of air conditioning systems. In this paper, the energy performances achievable using an earth-to-air heat exchanger for an air conditioned building have been evaluated for both winter and summer. By means of dynamic building energy performance simulation codes, the energy requirements of the systems have been analysed for different Italian climates, as a function of the main boundary conditions (such as the typology of soil, tube material, tube length and depth, velocity of the air crossing the tube, ventilation airflow rates, control modes). The earth-to-air heat exchanger has shown the highest efficiency for cold climates both in winter and summer. The possible coupling of this technology with other passive strategies has been also examined. Then, a technical-economic analysis has been carried out: this technology is economically acceptable (simple payback of 5 and 9 years) only in the cases of easy and cheap moving earth works; moreover, metallic tubes are not suitable. Finally, considering in summer a not fully air-conditioned building, only provided with diurnal ventilation coupled to an earth-to-air heat exchanger plus night-time ventilation, the possible indoor thermal comfort conditions have been evaluated.

Earth-to-air heat exchangers for Italian climates / Ascione, Fabrizio; Bellia, Laura; Minichiello, Francesco. - In: RENEWABLE ENERGY. - ISSN 0960-1481. - 36:(2011), pp. 2177-2188. [10.1016/j.renene.2011.01.013]

Earth-to-air heat exchangers for Italian climates

ASCIONE, FABRIZIO;BELLIA, LAURA;MINICHIELLO, FRANCESCO
2011

Abstract

The European Energy Efficiency Building Directive 2002/91/CE, as well as other acts and funding programs, strongly promotes the adoption of passive strategies for buildings, in order to achieve indoor thermal comfort conditions above all in summer, so reducing or avoiding the use of air conditioning systems. In this paper, the energy performances achievable using an earth-to-air heat exchanger for an air conditioned building have been evaluated for both winter and summer. By means of dynamic building energy performance simulation codes, the energy requirements of the systems have been analysed for different Italian climates, as a function of the main boundary conditions (such as the typology of soil, tube material, tube length and depth, velocity of the air crossing the tube, ventilation airflow rates, control modes). The earth-to-air heat exchanger has shown the highest efficiency for cold climates both in winter and summer. The possible coupling of this technology with other passive strategies has been also examined. Then, a technical-economic analysis has been carried out: this technology is economically acceptable (simple payback of 5 and 9 years) only in the cases of easy and cheap moving earth works; moreover, metallic tubes are not suitable. Finally, considering in summer a not fully air-conditioned building, only provided with diurnal ventilation coupled to an earth-to-air heat exchanger plus night-time ventilation, the possible indoor thermal comfort conditions have been evaluated.
2011
Earth-to-air heat exchangers for Italian climates / Ascione, Fabrizio; Bellia, Laura; Minichiello, Francesco. - In: RENEWABLE ENERGY. - ISSN 0960-1481. - 36:(2011), pp. 2177-2188. [10.1016/j.renene.2011.01.013]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/513238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 162
  • ???jsp.display-item.citation.isi??? 130
social impact