Let p be an odd prime, M be an unstable locally finite module over the Steenrod algebra, and let Phi(S) be the localization out of the Euler class of the mod-p cohomology ring of the group Z/p. We prove that the Singer evaluation map d : Phi(GL1)(S) circle times M -> M is dually related to a total operation chi(P) : M -> Phi(GL1)(S) circle times M. We determine the exotic A(p)-module structure on the target which makes chi(P) an A(p)-linear map, give a new proof of the Adem relations and find some new identities involving the Bockstein and the pth reduced powers.

A total Steenrod operation as homomorphism of Steenrod algebra-modules / Brunetti, Maurizio; Ciampella, Adriana; Lomonaco, Luciano Amito. - In: RICERCHE DI MATEMATICA. - ISSN 1827-3491. - 61:1(2012), pp. 1-17. [10.1007/s11587-011-0111-3]

A total Steenrod operation as homomorphism of Steenrod algebra-modules

BRUNETTI, MAURIZIO;CIAMPELLA, ADRIANA;LOMONACO, LUCIANO AMITO
2012

Abstract

Let p be an odd prime, M be an unstable locally finite module over the Steenrod algebra, and let Phi(S) be the localization out of the Euler class of the mod-p cohomology ring of the group Z/p. We prove that the Singer evaluation map d : Phi(GL1)(S) circle times M -> M is dually related to a total operation chi(P) : M -> Phi(GL1)(S) circle times M. We determine the exotic A(p)-module structure on the target which makes chi(P) an A(p)-linear map, give a new proof of the Adem relations and find some new identities involving the Bockstein and the pth reduced powers.
2012
A total Steenrod operation as homomorphism of Steenrod algebra-modules / Brunetti, Maurizio; Ciampella, Adriana; Lomonaco, Luciano Amito. - In: RICERCHE DI MATEMATICA. - ISSN 1827-3491. - 61:1(2012), pp. 1-17. [10.1007/s11587-011-0111-3]
File in questo prodotto:
File Dimensione Formato  
Total Steenrod Ricerche_2012.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 447.53 kB
Formato Adobe PDF
447.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/528246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact