Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS: Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION: We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation.
Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules / Marazioti, A; Bucci, Mariarosaria; Coletta, C; Vellecco, Valentina; Baskaran, P; Szabó, C; Cirino, Giuseppe; Marques, Ar; Guerreiro, B; Gonçalves, Am; Seixas, Jd; Beuve, A; Romão, Cc; Papapetropoulos, A.. - In: ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY. - ISSN 1079-5642. - 31:11(2011), pp. 2570-2576. [10.1161/ATVBAHA.111.229039]
Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules.
BUCCI, MARIAROSARIA;VELLECCO, VALENTINA;CIRINO, GIUSEPPE;
2011
Abstract
Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS: Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION: We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation.File | Dimensione | Formato | |
---|---|---|---|
ATVB 2011.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.