A theoretical investigation of the propagation of a relativistic electron (or positron) particle beam in an overdense magnetoactive plasma is carried out within a fluid plasma model, taking into account the individual quantum properties of beam particles. It is demonstrated that the collective character of the particle beam manifests mostly through the self-consistent macroscopic plasma wakefield created by the charge and the current densities of the beam. The transverse dynamics of the beam-plasma system is governed by the Schrodinger equation for a single-particle wavefunction derived under the Hartree mean field approximation, coupled with a Poisson-like equation for the wake potential. These two coupled equations are subsequently reduced to a nonlinear, non-local Schrodinger equation and solved in a strongly non-local regime. An approximate Glauber solution is found analytically in the form of a Hermite-Gauss ring soliton. Such non-stationary ('breathing' and 'wiggling') coherent structure may be parametrically unstable and the corresponding growth rates are estimated analytically.
Coherent quantum hollow beam creation in a plasma wakefield accelerator / D., Jovanović; Fedele, Renato; Tanjia, Fatema; S., De Nicola; M., Belic. - In: JOURNAL OF PLASMA PHYSICS. - ISSN 0022-3778. - 79:4(2013), pp. 397-403. [10.1017/S0022377813000111]
Coherent quantum hollow beam creation in a plasma wakefield accelerator
FEDELE, RENATO;TANJIA, FATEMA;
2013
Abstract
A theoretical investigation of the propagation of a relativistic electron (or positron) particle beam in an overdense magnetoactive plasma is carried out within a fluid plasma model, taking into account the individual quantum properties of beam particles. It is demonstrated that the collective character of the particle beam manifests mostly through the self-consistent macroscopic plasma wakefield created by the charge and the current densities of the beam. The transverse dynamics of the beam-plasma system is governed by the Schrodinger equation for a single-particle wavefunction derived under the Hartree mean field approximation, coupled with a Poisson-like equation for the wake potential. These two coupled equations are subsequently reduced to a nonlinear, non-local Schrodinger equation and solved in a strongly non-local regime. An approximate Glauber solution is found analytically in the form of a Hermite-Gauss ring soliton. Such non-stationary ('breathing' and 'wiggling') coherent structure may be parametrically unstable and the corresponding growth rates are estimated analytically.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.