On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™. Particularly, information between the two simulation tools are at first exchanged under motored conditions to tune an “in-house developed” turbulence sub-model included in the 1D software. 1D results are then validated against the experimental data under fired full load operations, by employing a further “in-house developed” combustion sub-model. BCs are finally passed back to the 3D code to carry out a detailed knock analysis for two full load points, namely 2100 and 4000 rpm. In particular, the knock intensity is predicted, for experimentally actuated and earlier spark advances, and the results are qualitatively compared to the AR model outcomes.
Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique / Stefano, Fontanesi; Elena, Severi; Daniela, Siano; Bozza, Fabio; DE BELLIS, Vincenzo. - In: SAE INTERNATIONAL JOURNAL OF ENGINES. - ISSN 1946-3936. - 7:1(2014), pp. 72-86. [10.4271/2014-01-1065]
Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique
BOZZA, FABIO;DE BELLIS, VINCENZO
2014
Abstract
On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™. Particularly, information between the two simulation tools are at first exchanged under motored conditions to tune an “in-house developed” turbulence sub-model included in the 1D software. 1D results are then validated against the experimental data under fired full load operations, by employing a further “in-house developed” combustion sub-model. BCs are finally passed back to the 3D code to carry out a detailed knock analysis for two full load points, namely 2100 and 4000 rpm. In particular, the knock intensity is predicted, for experimentally actuated and earlier spark advances, and the results are qualitatively compared to the AR model outcomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.