The aim of the paper is to consider a Cauchy problem related to the class of hyperbolic operators with double characteristics in the half-space $Omega = R^2 x] 0, + infinity[$. A priori estimates in Sobolev spaces $W^{-r,2}$, with r negative, are shown. Moreover, an existence and uniqueness result is presented.

New results on the Cauchy problem for a class of hyperbolic equations in the half-space / Barbagallo, Annamaria; Esposito, Vincenzo. - 1648:(2015). (Intervento presentato al convegno 12th International Conference of Numerical Analysis and Applied Mathematics) [10.1063/1.4913185].

New results on the Cauchy problem for a class of hyperbolic equations in the half-space

BARBAGALLO, ANNAMARIA;ESPOSITO, VINCENZO
2015

Abstract

The aim of the paper is to consider a Cauchy problem related to the class of hyperbolic operators with double characteristics in the half-space $Omega = R^2 x] 0, + infinity[$. A priori estimates in Sobolev spaces $W^{-r,2}$, with r negative, are shown. Moreover, an existence and uniqueness result is presented.
2015
New results on the Cauchy problem for a class of hyperbolic equations in the half-space / Barbagallo, Annamaria; Esposito, Vincenzo. - 1648:(2015). (Intervento presentato al convegno 12th International Conference of Numerical Analysis and Applied Mathematics) [10.1063/1.4913185].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/585404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact