We present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.

Hessian determinants as elements of dual Sobolev spaces / Radice, Teresa. - In: STUDIA MATHEMATICA. - ISSN 0039-3223. - 224:2(2014), pp. 183-190. [10.4064/sm224-2-6]

Hessian determinants as elements of dual Sobolev spaces

RADICE, TERESA
2014

Abstract

We present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.
2014
Hessian determinants as elements of dual Sobolev spaces / Radice, Teresa. - In: STUDIA MATHEMATICA. - ISSN 0039-3223. - 224:2(2014), pp. 183-190. [10.4064/sm224-2-6]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/594969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact