The effect of ethanol addition in ethylene laminar premixed flames on the characteristics of soot precursor nanoparticles was investigated by aerosol photoionization technique. The fifth harmonic of a Nd:YAG laser, 213 nm (5.82 eV), was used as ionization source, while a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for ionized particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., with sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the percentage of ethanol used as dopant in the flame. In particular, we observed that the more ethanol was added as fuel, the lower the particle photo-charging efficiency was. This result indicates a modification in the nanoparticle chemical structure as the amount of ethanol is increased. These experimental evidences may be explained by a decrease of aromaticity of the particles and/or by the presence of oxygen bonds within the nanoparticles.

Photoionization Study of Soot Precursor Nanoparticles in Laminar Premixed Ethylene/Ethanol Flames / M., Commodo; G., Tessitore; DE FALCO, Gianluigi; P., Minutolo; D'Anna, Andrea. - In: COMBUSTION SCIENCE AND TECHNOLOGY. - ISSN 0010-2202. - 186:(2014), pp. 621-633. [10.1080/00102202.2014.883262]

Photoionization Study of Soot Precursor Nanoparticles in Laminar Premixed Ethylene/Ethanol Flames

DE FALCO, GIANLUIGI;D'ANNA, ANDREA
2014

Abstract

The effect of ethanol addition in ethylene laminar premixed flames on the characteristics of soot precursor nanoparticles was investigated by aerosol photoionization technique. The fifth harmonic of a Nd:YAG laser, 213 nm (5.82 eV), was used as ionization source, while a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for ionized particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., with sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the percentage of ethanol used as dopant in the flame. In particular, we observed that the more ethanol was added as fuel, the lower the particle photo-charging efficiency was. This result indicates a modification in the nanoparticle chemical structure as the amount of ethanol is increased. These experimental evidences may be explained by a decrease of aromaticity of the particles and/or by the presence of oxygen bonds within the nanoparticles.
2014
Photoionization Study of Soot Precursor Nanoparticles in Laminar Premixed Ethylene/Ethanol Flames / M., Commodo; G., Tessitore; DE FALCO, Gianluigi; P., Minutolo; D'Anna, Andrea. - In: COMBUSTION SCIENCE AND TECHNOLOGY. - ISSN 0010-2202. - 186:(2014), pp. 621-633. [10.1080/00102202.2014.883262]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/596833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact