Computer code calculations based on biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. Biological measurements are urgently needed to benchmark the codes. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 56Fe-ion beams accelerated at the HIMAC synchrotron in Chiba. Isolated lymphocytes were exposed to the 500 MeV/n iron beam (dose range 0.1-1 Gy) after traversal of 0 to 8 g/cm2 of either PMMA (lucite, a common plastic material) or aluminum. Three PMMA shield thickness and one Al shield thickness were used. For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The yield of chromosomal aberrations per unit dose at the sample position was poorly dependent on the shield thickness and material. However, the yield of aberrations per unit ion incident on the shield was increased by the shielding. This increase is associated to the increased dose-rate measured behind the shield as compared to the direct beam. These preliminary results prove that shielding can increase the effectiveness of heavy ions, and the damage is dependent upon shield thickness and material, and heavy ion energy and charge.

Influence of the shielding on the space radiation biological effectiveness. II. Chromosomal aberrations / M., Durante; G., Gialanella; Grossi, Gianfranco; Pugliese, Mariagabriella; Scampoli, Paola; T., Kawata; N., Yasuda; Y., Furusawa. - In: JOURNAL OF RADIATION RESEARCH. - ISSN 0449-3060. - 43:(2002), pp. S107-S111.

Influence of the shielding on the space radiation biological effectiveness. II. Chromosomal aberrations

GROSSI, GIANFRANCO;PUGLIESE, MARIAGABRIELLA;SCAMPOLI, PAOLA;
2002

Abstract

Computer code calculations based on biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. Biological measurements are urgently needed to benchmark the codes. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 56Fe-ion beams accelerated at the HIMAC synchrotron in Chiba. Isolated lymphocytes were exposed to the 500 MeV/n iron beam (dose range 0.1-1 Gy) after traversal of 0 to 8 g/cm2 of either PMMA (lucite, a common plastic material) or aluminum. Three PMMA shield thickness and one Al shield thickness were used. For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The yield of chromosomal aberrations per unit dose at the sample position was poorly dependent on the shield thickness and material. However, the yield of aberrations per unit ion incident on the shield was increased by the shielding. This increase is associated to the increased dose-rate measured behind the shield as compared to the direct beam. These preliminary results prove that shielding can increase the effectiveness of heavy ions, and the damage is dependent upon shield thickness and material, and heavy ion energy and charge.
2002
Influence of the shielding on the space radiation biological effectiveness. II. Chromosomal aberrations / M., Durante; G., Gialanella; Grossi, Gianfranco; Pugliese, Mariagabriella; Scampoli, Paola; T., Kawata; N., Yasuda; Y., Furusawa. - In: JOURNAL OF RADIATION RESEARCH. - ISSN 0449-3060. - 43:(2002), pp. S107-S111.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/598223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact