Multi wall carbon nanotubes (MWCNTs) with different aspect ratios (30, 105 and 667) were included in a commercial fully biodegradable blend using melt mixing. Samples of composite systems prepared by hot molding and containing up to 1.2 vol% of MWCNTs were studied by means of DC electrical resistivity and dielectric spectroscopy in order to enhance effect of filler content and aspect ratio on their dielectric behavior. Raman spectroscopic investigations and morphological observations were also performed in order to correlate dielectric behavior with surface carbon nanotubes features and to check the actual level of dispersion of carbon nanotubes under the applied processing conditions. Results emphasized that the carbon nanotubes aspect ratio and their surface regularity determine the electrical properties of composites because they strongly influence percolation thresholds, dielectric permittivity and dissipation factor of produced materials. A satisfying dispersion of the filler seems to be achieved under the employed processing conditions. These preliminary results demonstrates possible applications of this type of biobased systems in many applications going from stress control to devices for high storage energy.
Dielectric behavior of biopolymer based composites containing multi wall carbon nanotubes: Effect of filler content and aspect ratio / P., Musto; P., Russo; F., Cimino; Acierno, Domenico; Lupo', Giovanni; Petrarca, Carlo. - In: EUROPEAN POLYMER JOURNAL. - ISSN 0014-3057. - 64:(2015), pp. 170-178. [10.1016/j.eurpolymj.2015.01.010]
Dielectric behavior of biopolymer based composites containing multi wall carbon nanotubes: Effect of filler content and aspect ratio
ACIERNO, DOMENICO;LUPO', GIOVANNI;PETRARCA, CARLO
2015
Abstract
Multi wall carbon nanotubes (MWCNTs) with different aspect ratios (30, 105 and 667) were included in a commercial fully biodegradable blend using melt mixing. Samples of composite systems prepared by hot molding and containing up to 1.2 vol% of MWCNTs were studied by means of DC electrical resistivity and dielectric spectroscopy in order to enhance effect of filler content and aspect ratio on their dielectric behavior. Raman spectroscopic investigations and morphological observations were also performed in order to correlate dielectric behavior with surface carbon nanotubes features and to check the actual level of dispersion of carbon nanotubes under the applied processing conditions. Results emphasized that the carbon nanotubes aspect ratio and their surface regularity determine the electrical properties of composites because they strongly influence percolation thresholds, dielectric permittivity and dissipation factor of produced materials. A satisfying dispersion of the filler seems to be achieved under the employed processing conditions. These preliminary results demonstrates possible applications of this type of biobased systems in many applications going from stress control to devices for high storage energy.File | Dimensione | Formato | |
---|---|---|---|
Dielectric behavior of biopolymer based composites containing multi wall carbon nanotubes.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
605.85 kB
Formato
Adobe PDF
|
605.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.