In this paper we prove the following result. Let s be an infinite word on a finite alphabet, and N ≥ 0 be an integer. Suppose that all left special factors of s longer than N are prefixes of s, and that s has at most one right special factor of each length greater than N. Then s is a morphic image, under an injective morphism, of a suitable standard Arnoux-Rauzy word.
On a Family of Morphic Images of Arnoux-Rauzy Words / Michelangelo, Bucci; DE LUCA, Alessandro. - 5457:(2009), pp. 259-266. (Intervento presentato al convegno Language and Automata Theory and Applications (LATA 2009) tenutosi a Tarragona nel 2-8 aprile 2009) [10.1007/978-3-642-00982-2_22].
On a Family of Morphic Images of Arnoux-Rauzy Words
DE LUCA, ALESSANDRO
2009
Abstract
In this paper we prove the following result. Let s be an infinite word on a finite alphabet, and N ≥ 0 be an integer. Suppose that all left special factors of s longer than N are prefixes of s, and that s has at most one right special factor of each length greater than N. Then s is a morphic image, under an injective morphism, of a suitable standard Arnoux-Rauzy word.File | Dimensione | Formato | |
---|---|---|---|
OaFoMIoARW.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
134.44 kB
Formato
Adobe PDF
|
134.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.