BACKGROUND: In vitro study showed that NADPH oxidase (NOx), the most important enzyme producing reactive oxygen species (ROS), plays a role in the process of platelet activation. However, it is unclear if changes in its activity affect platelet activation in vivo. METHODS AND RESULTS: In vivo and ex vivo experiments assessing platelet activation were investigated in healthy subjects, obese patients, and subjects with different low rates of NOx2 activity, namely X-linked chronic granulomatous disease (X-CGD) patients and X-CGD carriers. We included 27 X-CGD patients, 31 women carriers of hereditary deficiency of NOx2, 31 obese women, and 62 healthy subjects matched for sex and age. Plasma levels of soluble sCD40 L (sCD40L) and soluble P (sP)-selectin, 2 markers of in vivo platelet activation, were reduced in X-CGD patients (sCD40L=-55%; sP-selectin=-51%, P<0.001) and in X-CGD carriers (sCD40L=-41%; sP-selectin=-57%, P<0.001) compared with respective controls. Conversely, obese women, who disclosed NOx2 upregulation, had significantly higher plasma levels of sCD40L (+47%, P<0.001) and sP-selectin (+70%, P<0.001) compared with controls. Ex vivo study showed platelet isoprostane downexpression and enhanced platelet NO generation in both X-CGD patients and X-CGD carriers compared with controls; opposite findings were observed in obese patients. Correlation analysis showed that platelet NOx2 regulation was directly associated with plasma levels of sCD40L (R=0.336, P<0.001) and sP-selectin (R=0.441; P<0.001). CONCLUSIONS: The study provides the first evidence that in vivo platelet activation is significantly and directly associated with NOx2 activity. Platelet NOx2 may be a novel target for platelet activation inhibition.
Different Degrees of NADPH Oxidase 2 Regulation and In Vivo Platelet Activation: Lesson From Chronic Granulomatous Disease / Carnevale, R.; Loffredo, L.; Sanguigni, V.; Plebani, A.; Rossi, P.; Pignata, Claudio; Martire, B.; Finocchi, A.; Pietrogrande, M. C.; Azzari, C.; Soresina, A. R.; Martino, S.; Cirillo, Emilia; Martino, F.; Pignatelli, P.; Violi, F.. - In: JOURNAL OF THE AMERICAN HEART ASSOCIATION. CARDIOVASCULAR AND CEREBROVASCULAR DISEASE. - ISSN 2047-9980. - 3:(2014), pp. 1-9. [10.1161/JAHA.114.000920]
Different Degrees of NADPH Oxidase 2 Regulation and In Vivo Platelet Activation: Lesson From Chronic Granulomatous Disease
CIRILLO, EMILIA;
2014
Abstract
BACKGROUND: In vitro study showed that NADPH oxidase (NOx), the most important enzyme producing reactive oxygen species (ROS), plays a role in the process of platelet activation. However, it is unclear if changes in its activity affect platelet activation in vivo. METHODS AND RESULTS: In vivo and ex vivo experiments assessing platelet activation were investigated in healthy subjects, obese patients, and subjects with different low rates of NOx2 activity, namely X-linked chronic granulomatous disease (X-CGD) patients and X-CGD carriers. We included 27 X-CGD patients, 31 women carriers of hereditary deficiency of NOx2, 31 obese women, and 62 healthy subjects matched for sex and age. Plasma levels of soluble sCD40 L (sCD40L) and soluble P (sP)-selectin, 2 markers of in vivo platelet activation, were reduced in X-CGD patients (sCD40L=-55%; sP-selectin=-51%, P<0.001) and in X-CGD carriers (sCD40L=-41%; sP-selectin=-57%, P<0.001) compared with respective controls. Conversely, obese women, who disclosed NOx2 upregulation, had significantly higher plasma levels of sCD40L (+47%, P<0.001) and sP-selectin (+70%, P<0.001) compared with controls. Ex vivo study showed platelet isoprostane downexpression and enhanced platelet NO generation in both X-CGD patients and X-CGD carriers compared with controls; opposite findings were observed in obese patients. Correlation analysis showed that platelet NOx2 regulation was directly associated with plasma levels of sCD40L (R=0.336, P<0.001) and sP-selectin (R=0.441; P<0.001). CONCLUSIONS: The study provides the first evidence that in vivo platelet activation is significantly and directly associated with NOx2 activity. Platelet NOx2 may be a novel target for platelet activation inhibition.File | Dimensione | Formato | |
---|---|---|---|
jah3-3-e000920.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
580.7 kB
Formato
Adobe PDF
|
580.7 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.