The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.

Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development / Montella, Salvatore; Amore, Antonella; Faraco, Vincenza. - In: CRITICAL REVIEWS IN BIOTECHNOLOGY. - ISSN 0738-8551. - 36:6(2016), pp. 998-1009. [10.3109/07388551.2015.1083939]

Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development

MONTELLA, SALVATORE;AMORE, ANTONELLA;FARACO, VINCENZA
2016

Abstract

The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.
2016
Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development / Montella, Salvatore; Amore, Antonella; Faraco, Vincenza. - In: CRITICAL REVIEWS IN BIOTECHNOLOGY. - ISSN 0738-8551. - 36:6(2016), pp. 998-1009. [10.3109/07388551.2015.1083939]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/613424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact