Rab7 regulates the biogenesis of late endosomes, lysosomes and autophagosomes. It has been proposed that a functional and physical interaction exists between Rab7 and Rac1 GTPases in CDH1 endocytosis and ruffled border formation. In FRT cells over-expressing Rab7, increased expression and activity of Rac1 was observed, whereas a reduction of Rab7 expression by RNAi resulted in reduced Rac1 activity, as measured by PAK1 phosphorylation. We found that CDH1 endocytosis was extremely reduced only in Rab7 over-expressing cells but was unchanged in Rab7 silenced cells. In Rab7 under or over-expressing cells, Rab7 and LC3B-II co-localized and co-localization in large circular structures occurred only in Rab7 over-expressing cells. These large circular structures occurred in about 10% of the cell population; some of them (61%) showed co-localization of Rab7 with cortactin and f-actin and were identified as circular dorsal ruffles (CDRs), the others as mature autophagosomes. We propose that the over-expression of Rab7 is sufficient to induce CDRs. Furthermore, in FRT cells, we found that the expression of the insoluble/active form of Rab7, rather than Rab5 or Rab8, was inducible by cAMP and that cAMP-stimulated FRT cells showed increased PAK1 phosphorylation and were no longer able to endocytose CDH1. Finally, we demonstrated that Rab7 over-expressing cells are able to endocytose exogenous thyroglobulin via pinocytosis/CDRs more efficiently than control cells. We propose that the major thyroglobulin endocytosis described in thyroid autonomous adenomas due to Rab7 increased expression, occurs via CDRs. This article is protected by copyright. All rights reserved.

Rab7 Regulates CDH1 Endocytosis, Circular Dorsal Ruffles Genesis and Thyroglobulin Internalization in a Thyroid Cell Line / Mascia, Anna; Gentile, Flaviana; Izzo, Antonella; Mollo, Nunzia; De Luca, Maria; Bucci, Cecilia; Nitsch, Lucio; Calì, Gaetano. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 231:8(2016), pp. 1695-1708. [10.1002/jcp.25267]

Rab7 Regulates CDH1 Endocytosis, Circular Dorsal Ruffles Genesis and Thyroglobulin Internalization in a Thyroid Cell Line

Izzo, Antonella;Mollo, Nunzia;Nitsch, Lucio;
2016

Abstract

Rab7 regulates the biogenesis of late endosomes, lysosomes and autophagosomes. It has been proposed that a functional and physical interaction exists between Rab7 and Rac1 GTPases in CDH1 endocytosis and ruffled border formation. In FRT cells over-expressing Rab7, increased expression and activity of Rac1 was observed, whereas a reduction of Rab7 expression by RNAi resulted in reduced Rac1 activity, as measured by PAK1 phosphorylation. We found that CDH1 endocytosis was extremely reduced only in Rab7 over-expressing cells but was unchanged in Rab7 silenced cells. In Rab7 under or over-expressing cells, Rab7 and LC3B-II co-localized and co-localization in large circular structures occurred only in Rab7 over-expressing cells. These large circular structures occurred in about 10% of the cell population; some of them (61%) showed co-localization of Rab7 with cortactin and f-actin and were identified as circular dorsal ruffles (CDRs), the others as mature autophagosomes. We propose that the over-expression of Rab7 is sufficient to induce CDRs. Furthermore, in FRT cells, we found that the expression of the insoluble/active form of Rab7, rather than Rab5 or Rab8, was inducible by cAMP and that cAMP-stimulated FRT cells showed increased PAK1 phosphorylation and were no longer able to endocytose CDH1. Finally, we demonstrated that Rab7 over-expressing cells are able to endocytose exogenous thyroglobulin via pinocytosis/CDRs more efficiently than control cells. We propose that the major thyroglobulin endocytosis described in thyroid autonomous adenomas due to Rab7 increased expression, occurs via CDRs. This article is protected by copyright. All rights reserved.
2016
Rab7 Regulates CDH1 Endocytosis, Circular Dorsal Ruffles Genesis and Thyroglobulin Internalization in a Thyroid Cell Line / Mascia, Anna; Gentile, Flaviana; Izzo, Antonella; Mollo, Nunzia; De Luca, Maria; Bucci, Cecilia; Nitsch, Lucio; Calì, Gaetano. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 231:8(2016), pp. 1695-1708. [10.1002/jcp.25267]
File in questo prodotto:
File Dimensione Formato  
Mascia et al 2015.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 7.8 MB
Formato Adobe PDF
7.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/613591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact