Because of their prevalence, severity and lack of effective treatments, inborn errors of metabolism need novel and more effective therapeutic approaches. The opportunity for an early treatment coming from expanded newborn screening has made this need even more urgent. To meet this demand, a growing number of novel treatments are entering in the phase of clinical development. Strategies to overcome the detrimental consequences of the enzyme deficiencies responsible for inborn errors of metabolism have been focused on multiple fronts at the levels of the gene, RNA, protein and whole cell. These strategies have been accomplished using a wide spectrum of approaches ranging from small molecules to enzyme replacement therapy, cell and gene therapy. The applications of new technologies in the field of inborn errors of metabolism, such as genome editing, RNA interference and cell reprogramming, along with progress in pre-existing strategies, such as gene therapy or cell transplantation, have tremendous potential for clinical translation.
Progress toward improved therapies for inborn errors of metabolism / Ginocchio, virginia maria; BRUNETTI PIERRI, Nicola. - In: HUMAN MOLECULAR GENETICS. - ISSN 0964-6906. - (2015), p. ddv418. [10.1093/hmg/ddv418]
Progress toward improved therapies for inborn errors of metabolism
GINOCCHIO, virginia maria;BRUNETTI PIERRI, NICOLA
2015
Abstract
Because of their prevalence, severity and lack of effective treatments, inborn errors of metabolism need novel and more effective therapeutic approaches. The opportunity for an early treatment coming from expanded newborn screening has made this need even more urgent. To meet this demand, a growing number of novel treatments are entering in the phase of clinical development. Strategies to overcome the detrimental consequences of the enzyme deficiencies responsible for inborn errors of metabolism have been focused on multiple fronts at the levels of the gene, RNA, protein and whole cell. These strategies have been accomplished using a wide spectrum of approaches ranging from small molecules to enzyme replacement therapy, cell and gene therapy. The applications of new technologies in the field of inborn errors of metabolism, such as genome editing, RNA interference and cell reprogramming, along with progress in pre-existing strategies, such as gene therapy or cell transplantation, have tremendous potential for clinical translation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.