Two kinds of forces are active in vitreoretinal traction diseases: tangential and anterior-posterior forces. However, tangential forces are less characterized and classified in literature compared to the anterior-posterior ones. Tangential epiretinal forces are mainly due to anomalous posterior vitreous detachment (PVD), vitreoschisis, vitreopapillary adhesion (VPA), and epiretinal membranes (ERMs). Anomalous PVD plays a key role in the formation of the tangential vectorial forces on the retinal surface as consequence of gel liquefaction (synchysis) without sufficient and fast vitreous dehiscence at the vitreoretinal interface. The anomalous and persistent adherence of the posterior hyaloid to the retina can lead to vitreomacular/vitreopapillary adhesion or to a formation of avascular fibrocellular tissue (ERM) resulting from the proliferation and transdifferentiation of hyalocytes resident in the cortical vitreous remnants after vitreoschisis. The right interpretation of the forces involved in the epiretinal tangential tractions helps in a better definition of diagnosis, progression, prognosis, and surgical outcomes of vitreomacular interfaces.
Retinal Changes Induced by Epiretinal Tangential Forces / Romano, Mario; Comune, Chiara; Ferrara, Mariantonia; Cennamo, Gilda; De Cillà, Stefano; Toto, Lisa; Cennamo, Giovanni. - In: JOURNAL OF OPHTHALMOLOGY. - ISSN 2090-004X. - 2015:(2015), p. 372564. [10.1155/2015/372564]
Retinal Changes Induced by Epiretinal Tangential Forces
ROMANO, MARIO;COMUNE, CHIARA;CENNAMO, GILDA;CENNAMO, GIOVANNI
2015
Abstract
Two kinds of forces are active in vitreoretinal traction diseases: tangential and anterior-posterior forces. However, tangential forces are less characterized and classified in literature compared to the anterior-posterior ones. Tangential epiretinal forces are mainly due to anomalous posterior vitreous detachment (PVD), vitreoschisis, vitreopapillary adhesion (VPA), and epiretinal membranes (ERMs). Anomalous PVD plays a key role in the formation of the tangential vectorial forces on the retinal surface as consequence of gel liquefaction (synchysis) without sufficient and fast vitreous dehiscence at the vitreoretinal interface. The anomalous and persistent adherence of the posterior hyaloid to the retina can lead to vitreomacular/vitreopapillary adhesion or to a formation of avascular fibrocellular tissue (ERM) resulting from the proliferation and transdifferentiation of hyalocytes resident in the cortical vitreous remnants after vitreoschisis. The right interpretation of the forces involved in the epiretinal tangential tractions helps in a better definition of diagnosis, progression, prognosis, and surgical outcomes of vitreomacular interfaces.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.