PURPOSE: Metformin, widely used as antidiabetic drug, showed antitumoral effects expecially in combination with chemotherapy. Our group recently has demonstrated that metformin and gefitinib are synergistic in LKB1-wild-type NSCLC cells. In these models, metformin as single agent induced an activation and phosphorylation of mitogen-activated-protein-kinase (MAPK) through an increased C-RAF/B-RAF heterodimerization. EXPERIMENTAL DESIGN: Since single agent metformin enhances proliferating signals through the RAS/RAF/MAPK pathway, and several MEK inhibitors (MEK-I) demonstrated clinical efficacy in combination with other agents in NSCLC, we tested the effects of metformin plus MEK-I (selumetinib or pimasertib) on proliferation, invasiveness, migration abilities in vitro and in vivo in LKB1 positive NSCLC models harboring KRAS wild type and mutated gene. RESULTS: The combination of metformin with MEK-I showed a strong anti-proliferative and proapoptotic effect in Calu-3, H1299, H358 and H1975 human NSCLC cell lines, independently from the KRAS mutational status. The combination reduced the metastatic behaviour of NSCLC cells, via a downregulation of GLI1 trascritional activity, thus affecting the transition from an epithelial to a mesenchymal phenotype. Metformin and MEK-Is combinations also decreased the production and activity of MMP-2 and MMP-9 by reducing the NF-jB (p65) binding to MMP-2 and MMP-9 promoters. CONCLUSIONS: Metformin potentiates the antitumor activity of MEK-Is in human LKB1-wild-type NSCLC cell lines, independently from the KRAS mutational status, through GLI1 downregulation and by reducing the NF-jB (p65)-mediated transcription of MMP-2 and MMP-9.

Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells / Della Corte, Carminia Maria; Ciaramella, Vincenza; DI MAURO, Concetta; Castellone, MARIA DOMENICA; Papaccio, Federica; Fasano, Morena; Sasso, Ferdinando Carlo; Martinelli, Erika; Troiani, Teresa; De Vita, Ferdinando; Orditura, Michele; Bianco, Roberto; Ciardiello, Fortunato; Morgillo, Floriana. - In: ONCOTARGET. - ISSN 1949-2553. - (2015). [10.18632/oncotarget.6559]

Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells

DI MAURO, CONCETTA;CASTELLONE, MARIA DOMENICA;BIANCO, ROBERTO;
2015

Abstract

PURPOSE: Metformin, widely used as antidiabetic drug, showed antitumoral effects expecially in combination with chemotherapy. Our group recently has demonstrated that metformin and gefitinib are synergistic in LKB1-wild-type NSCLC cells. In these models, metformin as single agent induced an activation and phosphorylation of mitogen-activated-protein-kinase (MAPK) through an increased C-RAF/B-RAF heterodimerization. EXPERIMENTAL DESIGN: Since single agent metformin enhances proliferating signals through the RAS/RAF/MAPK pathway, and several MEK inhibitors (MEK-I) demonstrated clinical efficacy in combination with other agents in NSCLC, we tested the effects of metformin plus MEK-I (selumetinib or pimasertib) on proliferation, invasiveness, migration abilities in vitro and in vivo in LKB1 positive NSCLC models harboring KRAS wild type and mutated gene. RESULTS: The combination of metformin with MEK-I showed a strong anti-proliferative and proapoptotic effect in Calu-3, H1299, H358 and H1975 human NSCLC cell lines, independently from the KRAS mutational status. The combination reduced the metastatic behaviour of NSCLC cells, via a downregulation of GLI1 trascritional activity, thus affecting the transition from an epithelial to a mesenchymal phenotype. Metformin and MEK-Is combinations also decreased the production and activity of MMP-2 and MMP-9 by reducing the NF-jB (p65) binding to MMP-2 and MMP-9 promoters. CONCLUSIONS: Metformin potentiates the antitumor activity of MEK-Is in human LKB1-wild-type NSCLC cell lines, independently from the KRAS mutational status, through GLI1 downregulation and by reducing the NF-jB (p65)-mediated transcription of MMP-2 and MMP-9.
2015
Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells / Della Corte, Carminia Maria; Ciaramella, Vincenza; DI MAURO, Concetta; Castellone, MARIA DOMENICA; Papaccio, Federica; Fasano, Morena; Sasso, Ferdinando Carlo; Martinelli, Erika; Troiani, Teresa; De Vita, Ferdinando; Orditura, Michele; Bianco, Roberto; Ciardiello, Fortunato; Morgillo, Floriana. - In: ONCOTARGET. - ISSN 1949-2553. - (2015). [10.18632/oncotarget.6559]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/615665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 61
social impact