Let Γ=(G,σ) be a signed graph, where G is its underlying graph and σ its sign function (defined on edges of G). A signed graphΓ′, the subgraph of Γ, is its signed TU-subgraph if the signed graph induced by the vertices ofΓ′consists of trees and/or unbalanced unicyclic signed graphs. Let L(Γ)=D(G)-A(Γ) be the Laplacian of Γ. In this paper we express the coefficient of the Laplacian characteristic polynomial of Γ based on the signed TU-subgraphs of Γ, and establish the relation between the Laplacian characteristic polynomial of a signed graph with adjacency characteristic polynomials of its signed line graph and signed subdivision graph. As an application, we identify the signed unicyclic graphs having extremal coefficients of the Laplacian characteristic polynomial.
On the Laplacian coefficients of signed graphs / Belardo, Francesco; Simić, Slobodan K.. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 475:(2015), pp. 94-113. [10.1016/j.laa.2015.02.007]
On the Laplacian coefficients of signed graphs
BELARDO, Francesco;
2015
Abstract
Let Γ=(G,σ) be a signed graph, where G is its underlying graph and σ its sign function (defined on edges of G). A signed graphΓ′, the subgraph of Γ, is its signed TU-subgraph if the signed graph induced by the vertices ofΓ′consists of trees and/or unbalanced unicyclic signed graphs. Let L(Γ)=D(G)-A(Γ) be the Laplacian of Γ. In this paper we express the coefficient of the Laplacian characteristic polynomial of Γ based on the signed TU-subgraphs of Γ, and establish the relation between the Laplacian characteristic polynomial of a signed graph with adjacency characteristic polynomials of its signed line graph and signed subdivision graph. As an application, we identify the signed unicyclic graphs having extremal coefficients of the Laplacian characteristic polynomial.File | Dimensione | Formato | |
---|---|---|---|
On the Laplacian coefficients of signed graphs.pdf
non disponibili
Descrizione: Articolo completo in Post-print
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
443.1 kB
Formato
Adobe PDF
|
443.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.