Following some ideas of a recent paper by Ambrosio, Bourgain, Brezis and Figalli, we prove a formula for the total variation of certain SBV functions without making use of the distributional derivatives.

A formula for the total variation of SBV functions / Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 270:1(2016), pp. 419-446. [10.1016/j.jfa.2015.06.010]

A formula for the total variation of SBV functions

FUSCO, NICOLA;MOSCARIELLO, GIOCONDA;SBORDONE, CARLO
2016

Abstract

Following some ideas of a recent paper by Ambrosio, Bourgain, Brezis and Figalli, we prove a formula for the total variation of certain SBV functions without making use of the distributional derivatives.
2016
A formula for the total variation of SBV functions / Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 270:1(2016), pp. 419-446. [10.1016/j.jfa.2015.06.010]
A formula for the total variation of SBV functions / Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 270:1(2016), pp. 419-446. [10.1016/j.jfa.2015.06.010]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/631332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact