Let rmax(n,d) be the maximum Waring rank for the set of *all* homogeneous polynomials of degree d>0 in n indeterminates with coefficients in an algebraically closed field of characteristic zero. To our knowledge, when n,d >= 3, the value of rmax(n,d) is known only for (n,d)=(3,3),(3,4),(3,5),(4,3). We prove that rmax(3,d)=d^2/4+O(d) as a consequence of the upper bound on rmax(3,d) given by the floor of (d^2+6d+1)/4.

The asymptotic leading term for maximum rank of ternary forms of a given degree / DE PARIS, Alessandro. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 500:(2016), pp. 15-29. [10.1016/j.laa.2016.03.012]

The asymptotic leading term for maximum rank of ternary forms of a given degree

DE PARIS, ALESSANDRO
2016

Abstract

Let rmax(n,d) be the maximum Waring rank for the set of *all* homogeneous polynomials of degree d>0 in n indeterminates with coefficients in an algebraically closed field of characteristic zero. To our knowledge, when n,d >= 3, the value of rmax(n,d) is known only for (n,d)=(3,3),(3,4),(3,5),(4,3). We prove that rmax(3,d)=d^2/4+O(d) as a consequence of the upper bound on rmax(3,d) given by the floor of (d^2+6d+1)/4.
2016
The asymptotic leading term for maximum rank of ternary forms of a given degree / DE PARIS, Alessandro. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - 500:(2016), pp. 15-29. [10.1016/j.laa.2016.03.012]
File in questo prodotto:
File Dimensione Formato  
AuthorVersionLAA.pdf

Open Access dal 03/07/2018

Descrizione: Post-print - full text
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 392.07 kB
Formato Adobe PDF
392.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/634821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact