Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated.
"Cold training" affects rat liver responses to continuous cold exposure / Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; DI MEO, Sergio. - In: FREE RADICAL BIOLOGY & MEDICINE. - ISSN 0891-5849. - 93:(2016), pp. 23-31. [10.1016/j.freeradbiomed.2016.01.018]
"Cold training" affects rat liver responses to continuous cold exposure.
VENDITTI, PAOLA
Writing – Review & Editing
;NAPOLITANO, GAETANAMembro del Collaboration Group
;BARONE, DANIELAMembro del Collaboration Group
;DI MEO, SERGIOWriting – Review & Editing
2016
Abstract
Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated.File | Dimensione | Formato | |
---|---|---|---|
FRBM 2016 “Cold training” affects ratliverresponsestocontinuouscoldexposure.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
500.52 kB
Formato
Adobe PDF
|
500.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.