Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.

Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications / Luchini, Alessandra; Irace, Carlo; Santamaria, Rita; Montesarchio, Daniela; Heenan, Richard K.; Szekely, Noemi; Flori, Alessandra; Menichetti, Luca; Paduano, Luigi. - In: NANOSCALE. - ISSN 2040-3364. - 8:19(2016), pp. 10078-10086. [10.1039/c5nr08486e]

Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications

LUCHINI, ALESSANDRA;IRACE, CARLO;SANTAMARIA, RITA;MONTESARCHIO, DANIELA;PADUANO, LUIGI
2016

Abstract

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.
2016
Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications / Luchini, Alessandra; Irace, Carlo; Santamaria, Rita; Montesarchio, Daniela; Heenan, Richard K.; Szekely, Noemi; Flori, Alessandra; Menichetti, Luca; Paduano, Luigi. - In: NANOSCALE. - ISSN 2040-3364. - 8:19(2016), pp. 10078-10086. [10.1039/c5nr08486e]
File in questo prodotto:
File Dimensione Formato  
Nanoscale 2016.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/639906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact