Let $p$ be an odd prime. Investigating the existence of a fractal structure for the universal Steenrod algebra $mathcal Q(p)$ and the Lambda algebra leads to determine the group of their length-preserving automorhisms. Contrarily to the $p=2$ case, no length-preserving strict monomorphism turns out to exist, and this makes reasonable to conjecture that the algebras above do not contain proper subalgebras isomorphic to themselves.
Length-preserving monomorphisms for some algebras of operations / Brunetti, Maurizio; Ciampella, Adriana; Lomonaco, LUCIANO AMITO. - In: BOLETÍN DE LA SOCIEDAD MATEMÁTICA MEXICANA. - ISSN 1405-213X. - 23:1(2017), pp. 487-500. [10.1007/s40590-016-0089-7]
Length-preserving monomorphisms for some algebras of operations
BRUNETTI, MAURIZIO
;CIAMPELLA, ADRIANA;LOMONACO, LUCIANO AMITO
2017
Abstract
Let $p$ be an odd prime. Investigating the existence of a fractal structure for the universal Steenrod algebra $mathcal Q(p)$ and the Lambda algebra leads to determine the group of their length-preserving automorhisms. Contrarily to the $p=2$ case, no length-preserving strict monomorphism turns out to exist, and this makes reasonable to conjecture that the algebras above do not contain proper subalgebras isomorphic to themselves.File | Dimensione | Formato | |
---|---|---|---|
Bull_Mex_def.pdf
solo utenti autorizzati
Descrizione: Articolo principsle
Tipologia:
Documento in Pre-print
Licenza:
Accesso privato/ristretto
Dimensione
859.36 kB
Formato
Adobe PDF
|
859.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.