Let Ω be an open set in Euclidean space with finite Lebesgue measure |Ω|. We obtain some properties of the set function F : Ω → R^+ defined by F(Ω) = T(Ω)λ_1(Ω)/ |Ω| where T(Ω) and λ_1(Ω) are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical Pólya bound F (Ω) ≤ 1, and show that F(Ω) ≤ 1 − ν_mT(Ω)|Ω|^(−1− 2/m) where ν_m depends only on m. For any m = 2,3,... and ε ∈ (0,1) we construct an open set Ω_ε ⊂R^m such that F(Ω_ε)≥1−ε.

On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue / van Den Berg, M.; Ferone, V.; Nitsch, C.; Trombetti, C.. - In: INTEGRAL EQUATIONS AND OPERATOR THEORY. - ISSN 0378-620X. - 86:4(2016), pp. 579-600. [10.1007/s00020-016-2334-x]

On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue

Ferone V.;Nitsch C.;Trombetti C.
2016

Abstract

Let Ω be an open set in Euclidean space with finite Lebesgue measure |Ω|. We obtain some properties of the set function F : Ω → R^+ defined by F(Ω) = T(Ω)λ_1(Ω)/ |Ω| where T(Ω) and λ_1(Ω) are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical Pólya bound F (Ω) ≤ 1, and show that F(Ω) ≤ 1 − ν_mT(Ω)|Ω|^(−1− 2/m) where ν_m depends only on m. For any m = 2,3,... and ε ∈ (0,1) we construct an open set Ω_ε ⊂R^m such that F(Ω_ε)≥1−ε.
2016
On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue / van Den Berg, M.; Ferone, V.; Nitsch, C.; Trombetti, C.. - In: INTEGRAL EQUATIONS AND OPERATOR THEORY. - ISSN 0378-620X. - 86:4(2016), pp. 579-600. [10.1007/s00020-016-2334-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/653803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact