Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent.

The natural cAMP elevating compound forskolin in cancer therapy: Is it time? / Luigi, Sapio; Gallo, Monica; Michela, Illiano; Emilio, Chiosi; Naviglio, Daniele; Annamaria, Spina; Silvio, Naviglio. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 232:5(2017), pp. 922-927. [10.1002/jcp.25650]

The natural cAMP elevating compound forskolin in cancer therapy: Is it time?

GALLO, MONICA;NAVIGLIO, DANIELE;
2017

Abstract

Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent.
2017
The natural cAMP elevating compound forskolin in cancer therapy: Is it time? / Luigi, Sapio; Gallo, Monica; Michela, Illiano; Emilio, Chiosi; Naviglio, Daniele; Annamaria, Spina; Silvio, Naviglio. - In: JOURNAL OF CELLULAR PHYSIOLOGY. - ISSN 0021-9541. - 232:5(2017), pp. 922-927. [10.1002/jcp.25650]
File in questo prodotto:
File Dimensione Formato  
Sapio_et_al-2017-Journal_of_Cellular_Physiology.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 237.73 kB
Formato Adobe PDF
237.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/654178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 93
social impact