This paper focuses on the application of the Modified Finite Particle Method (MFPM) on incompressibile elasticity problems. MFPM belongs to the class of meshless methods, nowadays widely investigated due to their characteristics of being totally free of any kind of grid or mesh. This characteristic makes meshless methods potentially useful for the study of large deformations problems and fluid dynamics. In particular, the aim of the work is to compare the results obtained with a simple displacement-based formulation, in the limit of incompressibility, and some formulations proposed in the literature for full incompressibility, where the typical divergence-free constraint is replaced by a different equation, the so-called Pressure Poisson Equation. The obtained results show that the MFPM achieves the expected second-order accuracy on formulation where the equations imposed as constraint satisfies also the original incompressibility equation. Other formulations, differently, do not satisfy the incompressibility constraint, and thus, they are not successfully applicable with the Modified Finite Particle Method.
Review of the modified finite particle method and application to incompressible solids / Asprone, Domenico; Auricchio, F.; Montanino, A.; Reali, A.. - In: THE INTERNATIONAL JOURNAL OF MULTIPHYSICS. - ISSN 1750-9548. - 9:3(2015), pp. 235-248. [10.1260/1750-9548.9.3.235]
Review of the modified finite particle method and application to incompressible solids
Asprone, Domenico;Montanino, A.;
2015
Abstract
This paper focuses on the application of the Modified Finite Particle Method (MFPM) on incompressibile elasticity problems. MFPM belongs to the class of meshless methods, nowadays widely investigated due to their characteristics of being totally free of any kind of grid or mesh. This characteristic makes meshless methods potentially useful for the study of large deformations problems and fluid dynamics. In particular, the aim of the work is to compare the results obtained with a simple displacement-based formulation, in the limit of incompressibility, and some formulations proposed in the literature for full incompressibility, where the typical divergence-free constraint is replaced by a different equation, the so-called Pressure Poisson Equation. The obtained results show that the MFPM achieves the expected second-order accuracy on formulation where the equations imposed as constraint satisfies also the original incompressibility equation. Other formulations, differently, do not satisfy the incompressibility constraint, and thus, they are not successfully applicable with the Modified Finite Particle Method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.