We present the so-called Modified Finite Particle Method (MFPM), that is a recent methodology of approximation of differential operators, based on the projection of the Taylor series of a function u(x) on a set of projection functions. In particular, we discuss the generalization of MFPM formulation to the multi-dimensional case, extending the methodological procedure adopted for the one-dimensional case. Moreover, we address the extension to dynamics and solve problems with an explicit time integration scheme. Finally, we apply the MFPM to an elasto-statics (a perforated plate under tension) and two elasto-dynamics (a two-dimensional bar under a quasi-impulsive load and a quarter of an annulus under a sinusoidal body load) benchmarks. When an analytical solution is available we calculate the corresponding convergence orders of the error, always obtaining the expected second-order accuracy

A modified finite particle method: Multi-dimensional statics and dynamics / Asprone, Domenico; Auricchio, F.; Montanino, A.; Reali, A.. - (2013), pp. 691-702. (Intervento presentato al convegno 3rd International Conference on Particle-based Methods tenutosi a Stuttgart (Germany) nel 18-20 September 2013).

A modified finite particle method: Multi-dimensional statics and dynamics

Asprone, Domenico;Montanino, A.;
2013

Abstract

We present the so-called Modified Finite Particle Method (MFPM), that is a recent methodology of approximation of differential operators, based on the projection of the Taylor series of a function u(x) on a set of projection functions. In particular, we discuss the generalization of MFPM formulation to the multi-dimensional case, extending the methodological procedure adopted for the one-dimensional case. Moreover, we address the extension to dynamics and solve problems with an explicit time integration scheme. Finally, we apply the MFPM to an elasto-statics (a perforated plate under tension) and two elasto-dynamics (a two-dimensional bar under a quasi-impulsive load and a quarter of an annulus under a sinusoidal body load) benchmarks. When an analytical solution is available we calculate the corresponding convergence orders of the error, always obtaining the expected second-order accuracy
2013
978-84-941531-8-1
A modified finite particle method: Multi-dimensional statics and dynamics / Asprone, Domenico; Auricchio, F.; Montanino, A.; Reali, A.. - (2013), pp. 691-702. (Intervento presentato al convegno 3rd International Conference on Particle-based Methods tenutosi a Stuttgart (Germany) nel 18-20 September 2013).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/656534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact