In this paper cone-copositive piecewise quadratic Lyapunov functions (PWQ-LFs) for the stability analysis of conewise linear systems with the possible presence of sliding modes are proposed. The existence of a PWQ-LF is formulated as the feasibility of a cone-copositive programming problem which is represented in terms of linear matrix inequalities with equality constraints. An algorithm for the construction of a PWQ-LF is provided. Examples show the effectiveness of the approach in the presence of stable and unstable sliding modes.

Stability analysis of conewise linear systems with sliding modes / Iervolino, Raffaele; Vasca, Francesco; Iannelli, Luigi. - (2015), pp. 1174-1179. (Intervento presentato al convegno 54th IEEE Conference on Decision and Control (CDC), 2010 tenutosi a Osaka (Japan) nel 15-18 Dec. 2015) [10.1109/CDC.2015.7402370].

Stability analysis of conewise linear systems with sliding modes

IERVOLINO, RAFFAELE;
2015

Abstract

In this paper cone-copositive piecewise quadratic Lyapunov functions (PWQ-LFs) for the stability analysis of conewise linear systems with the possible presence of sliding modes are proposed. The existence of a PWQ-LF is formulated as the feasibility of a cone-copositive programming problem which is represented in terms of linear matrix inequalities with equality constraints. An algorithm for the construction of a PWQ-LF is provided. Examples show the effectiveness of the approach in the presence of stable and unstable sliding modes.
2015
978-1-4799-7886-1
978-1-4799-7886-1
Stability analysis of conewise linear systems with sliding modes / Iervolino, Raffaele; Vasca, Francesco; Iannelli, Luigi. - (2015), pp. 1174-1179. (Intervento presentato al convegno 54th IEEE Conference on Decision and Control (CDC), 2010 tenutosi a Osaka (Japan) nel 15-18 Dec. 2015) [10.1109/CDC.2015.7402370].
File in questo prodotto:
File Dimensione Formato  
senza_titolo.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 386.15 kB
Formato Adobe PDF
386.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/668651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact