In the last decade, vitamin D has emerged as a pleiotropic molecule with a multitude of autocrine, paracrine and endocrine functions, mediated by classical genomic as well as non-classical non-genomic actions, on multiple target organs and systems. The expression of vitamin D receptor and vitamin D metabolizing enzymes in male reproductive system, particularly in the testis, suggests the occurrence of vitamin D synthesis and regulation as well as function in the testis. The role of vitamin D in the modulation of testis functions, including hormone production and spermatogenesis, has been investigated in animals and humans. Experimental studies support a beneficial effect of vitamin D on male fertility, by modulating hormone production through genomic and non-genomic actions, and, particularly, by improving semen quality essentially through non-genomic actions. However, clinical studies in humans are controversial. Indeed, vitamin D seems to contribute to the modulation of the bioavailable rather than total testosterone. Moreover, although an increased prevalence or risk for testosterone deficiency was reported in men with vitamin D deficiency in observational studies, the majority of interventional studies demonstrated the lack of effect of vitamin D supplementation on circulating levels of testosterone. The most consistent effect of vitamin D was reported on semen quality. Indeed, vitamin D was shown to be positively associated to sperm motility, and to exert direct actions on spermatozoa, including non-genomic driven modulation of intracellular calcium homeostasis and activation of molecular pathways involved in sperm motility, capacitation and acrosome reaction. The current review provides a summary of current knowledge on the role of vitamin D in male fertility, by reporting clinical and experimental studies in humans and animals addressing the relationship between vitamin D and testis function.
The role of vitamin D in male fertility: A focus on the testis / DE ANGELIS, Cristina; Galdiero, Mariano; Pivonello, Claudia; Garifalos, Francesco; Menafra, Davide; Cariati, Federica; Salzano, Ciro; Galdiero, Giacomo; Piscopo, Mariangela; Vece, Alfonso; Colao, Annamaria; Pivonello, Rosario. - In: REVIEWS IN ENDOCRINE & METABOLIC DISORDERS. - ISSN 1389-9155. - (2017). [10.1007/s11154-017-9425-0]
The role of vitamin D in male fertility: A focus on the testis
DE ANGELIS, CRISTINA;GALDIERO, MARIANO;PIVONELLO, CLAUDIA;Cariati, Federica;SALZANO, CIRO;Galdiero, Giacomo;Piscopo, Mariangela;COLAO, ANNAMARIA;PIVONELLO, ROSARIO
2017
Abstract
In the last decade, vitamin D has emerged as a pleiotropic molecule with a multitude of autocrine, paracrine and endocrine functions, mediated by classical genomic as well as non-classical non-genomic actions, on multiple target organs and systems. The expression of vitamin D receptor and vitamin D metabolizing enzymes in male reproductive system, particularly in the testis, suggests the occurrence of vitamin D synthesis and regulation as well as function in the testis. The role of vitamin D in the modulation of testis functions, including hormone production and spermatogenesis, has been investigated in animals and humans. Experimental studies support a beneficial effect of vitamin D on male fertility, by modulating hormone production through genomic and non-genomic actions, and, particularly, by improving semen quality essentially through non-genomic actions. However, clinical studies in humans are controversial. Indeed, vitamin D seems to contribute to the modulation of the bioavailable rather than total testosterone. Moreover, although an increased prevalence or risk for testosterone deficiency was reported in men with vitamin D deficiency in observational studies, the majority of interventional studies demonstrated the lack of effect of vitamin D supplementation on circulating levels of testosterone. The most consistent effect of vitamin D was reported on semen quality. Indeed, vitamin D was shown to be positively associated to sperm motility, and to exert direct actions on spermatozoa, including non-genomic driven modulation of intracellular calcium homeostasis and activation of molecular pathways involved in sperm motility, capacitation and acrosome reaction. The current review provides a summary of current knowledge on the role of vitamin D in male fertility, by reporting clinical and experimental studies in humans and animals addressing the relationship between vitamin D and testis function.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.