Human knowledge develops through complex relationships between categories. In the era of the Big Data, categorization implies data summarization in a limited number of well-separated groups that must be maximally internally homogeneous at the same time. This proposal exploits archetypal analysis capabilities in finding a set of extreme points that can summarize the entire data set in homogeneous groups. Archetypes are then used to identify the best prototypes according to the Rosch’s definition. Finally, in the geometric approach to cognitive science, the Voronoi tessellation based on the prototypes is used to define a categorization. An example on the Forina’s et al. well-known wine data set illustrates the procedure.

Statistical categorization through archetypal analysis / Palumbo, Francesco; Ragozini, Giancarlo. - (2017), pp. 759-766.

Statistical categorization through archetypal analysis

Francesco Palumbo
;
Giancarlo Ragozini
2017

Abstract

Human knowledge develops through complex relationships between categories. In the era of the Big Data, categorization implies data summarization in a limited number of well-separated groups that must be maximally internally homogeneous at the same time. This proposal exploits archetypal analysis capabilities in finding a set of extreme points that can summarize the entire data set in homogeneous groups. Archetypes are then used to identify the best prototypes according to the Rosch’s definition. Finally, in the geometric approach to cognitive science, the Voronoi tessellation based on the prototypes is used to define a categorization. An example on the Forina’s et al. well-known wine data set illustrates the procedure.
2017
978-88-6453-521-0
Statistical categorization through archetypal analysis / Palumbo, Francesco; Ragozini, Giancarlo. - (2017), pp. 759-766.
File in questo prodotto:
File Dimensione Formato  
Statistical categorization through archetypal analysis.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 254.88 kB
Formato Adobe PDF
254.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/693936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact