We prove a quantitative Faber-Krahn inequality for the first eigenvalue of the Laplace operator with Robin boundary conditions. The asymmetry term involves the square power of the Fraenkel asymmetry, multiplied by a constant depending on the Robin parameter, the dimension of the space and the measure of the set.
The quantitative Faber-Krahn inequality for the Robin Laplacian / Bucur, Dorin; Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 264:(2018), pp. -4488. [10.1016/j.jde.2017.12.014]
The quantitative Faber-Krahn inequality for the Robin Laplacian
Ferone Vincenzo;Nitsch Carlo;Trombetti Cristina
2018
Abstract
We prove a quantitative Faber-Krahn inequality for the first eigenvalue of the Laplace operator with Robin boundary conditions. The asymmetry term involves the square power of the Fraenkel asymmetry, multiplied by a constant depending on the Robin parameter, the dimension of the space and the measure of the set.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.